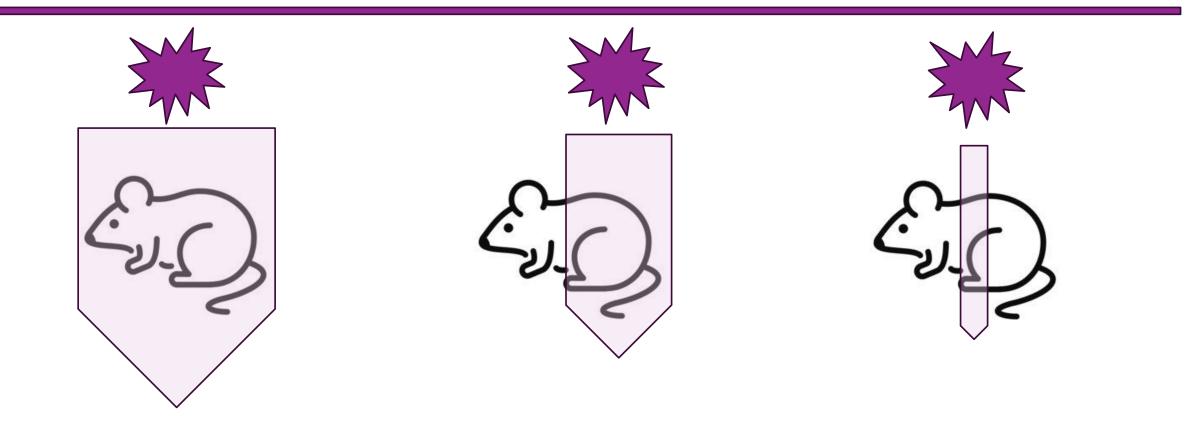
Prediction of Total Body and Partial Body Exposures to Radiation Using Plasma Proteomic Expression Profiles

Mary Sproull PhD Kevin Camphausen MD ROB/NCI/NIH CIRMS 2024 Annual Meeting

- These slides represent the work and opinions of the presenter and do not constitute official positions of the National Institutes of Health (NIH) or the U.S. Department of Health & Human Services (HHS)
- References to any specific commercial products by the trade name, trademark, manufacturer or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by NIH or HHS.

 Need for biomarkers of radiation exposure to quantify unknown dose to enhance medical management of radiation exposures from potential future IND, RED, RDD events.



- **Biodosimetry** uses physiological biomarkers of the bodies response to ionizing radiation exposure to estimate received dose
- Bioassay quantifies the amount of uptake/excretion of isotope to estimate received dose

"Any procedure used to determine the nature, activity, location or retention of radionuclides in the body by direct (in vivo) measurement or by in vitro analysis of material excreted or otherwise removed from the body" *IAEA

- Development of biomarker algorithms for "dose" prediction
- Accepted that we are approximating radiation "dose"
- Biodosimetry "dose" is a surrogate for "damage" or injury severity
- Designed to guide medical management decisions

Radiation Exposure Paradigms

Total Body Irradiation

Partial Body Exposure

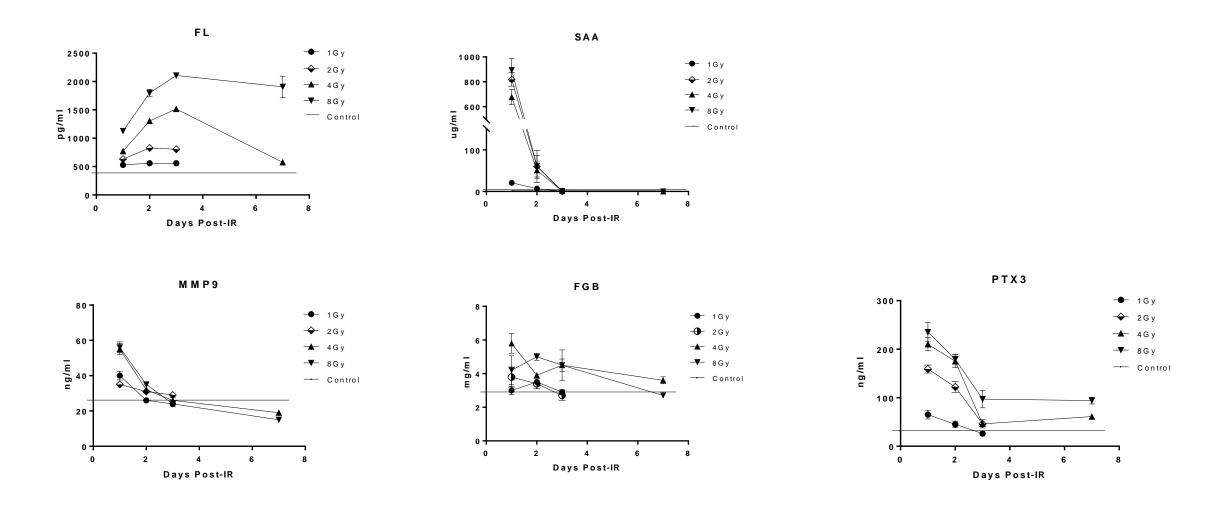
Organ Specific Partial Body Exposure

Need for both Total-body and Partial-body Biomarker Characterization

- Biodosimetry purposes: Mass casualty medical management/ Field Triage
 Uniform vs. Heterogeneous radiation exposures
- Acute Radiation Syndrome (ARS): Hematopoietic syndrome H-ARS Gastrointestinal syndrome GI-ARS Cardiovascular CV-ARS Central Nervous System syndrome CNS- ARS
- Medical Management of multi-organ injury (MOI): Overlap/interaction between ARS sub-syndromes

Project Aims

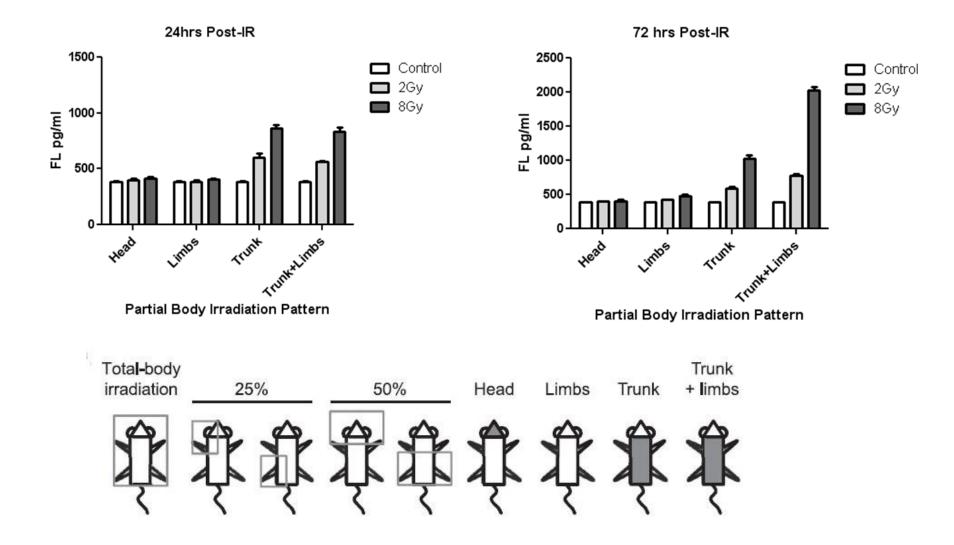
- Evaluate prospective protein biomarkers for radiation exposure
- Target Timeframe: Biomarker upregulation of expression between 24 hours and 1week post-exposure
- Detection: should be accessible in the blood and detectable using a commercially available proteomics platform.

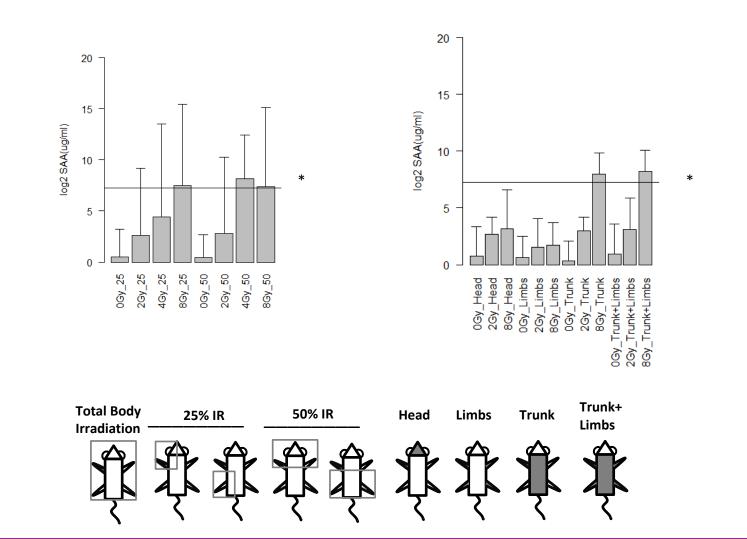

- Biodosimetry dose prediction algorithms for total body radiation exposures using a proteomic approach
- Strength of a multivariate approach for higher prediction accuracy*
- Prediction accuracy across time points/ fresh test samples/ across animal model strains

<u>*Comparison of Proteomic Biodosimetry Biomarkers Across Five Different Murine Strains.</u> **Sproull M**, Shankavaram U, Camphausen K. Radiat Res. 2019 Dec;192(6):640-648. doi: 10.1667/RR15442.1. Epub 2019 Oct 16.PMID: 31618122

*Multivariate Analysis of Radiation Responsive Proteins to Predict Radiation Exposure in Total-Body Irradiation and Partial-Body Irradiation Models. **Sproull M**, Kramp T, Tandle A, Shankavaram U, Camphausen K. Radiat Res. 2017 Feb;187(2):251-258. doi: 10.1667/RR14558.1. Epub 2017 Jan 24.PMID: 28118115

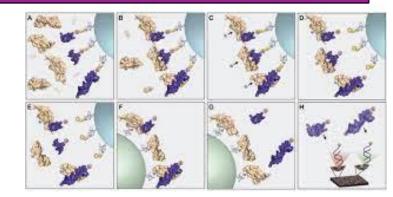
Radiation Biomarkers : TBI


Singleplex ELISA


*Sproull M, Kramp T, Tandle A, Shankavaram U, Camphausen K. Serum Amyloid A as a Biomarker for Radiation Exposure. Radiat Res. 2015;184(1):14-23. *Sproull M, Avondoglio D, Kramp T, Shankavaram U, Camphausen K. Correlation of plasma FL expression with bone marrow irradiation dose. PLoS One. 2013;8(3):e58558.

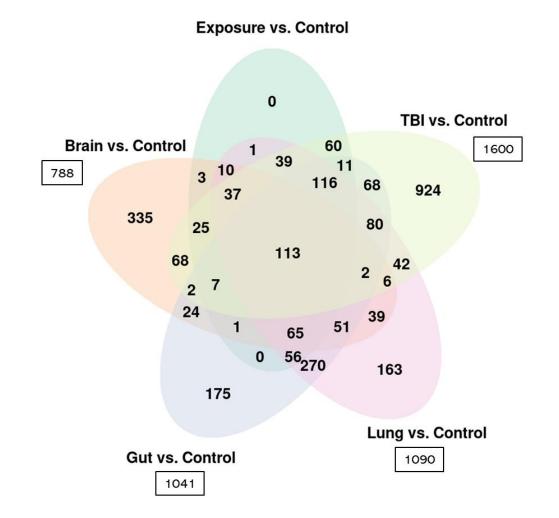
Partial Body FL Expression

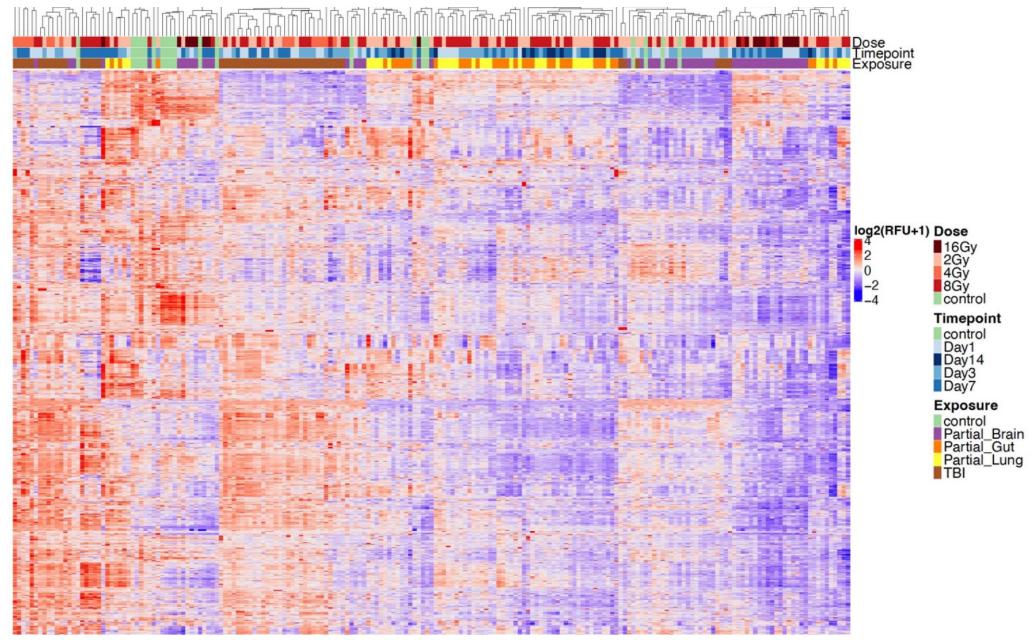
Singleplex ELISA


Partial Body SAA Expression

- Leverage a multivariate approach
- Technologies more adaptable to the needs of mass casualty diagnostic screening
- Biodosimetry application for heterogeneous radiation exposures

Proteomic Screening for Novel Biomarker Discovery:




- Aptamer based multiplex proteomic screening platform
- SOMAscan HTS Assay 7K : simultaneously screens ~7000 protein targets
- Needs only small volume of sample (150 ul)
- Validated for both Human, NHP and murine samples

- Partial body irradiation modeling: Organ specific exposures
 - Irradiation to only the Lung
 - Irradiation to only the Gut
 - Irradiation to only the Brain
- Model/algorithm building with field deployment applicability
- Relevance to medical management of radiation injury

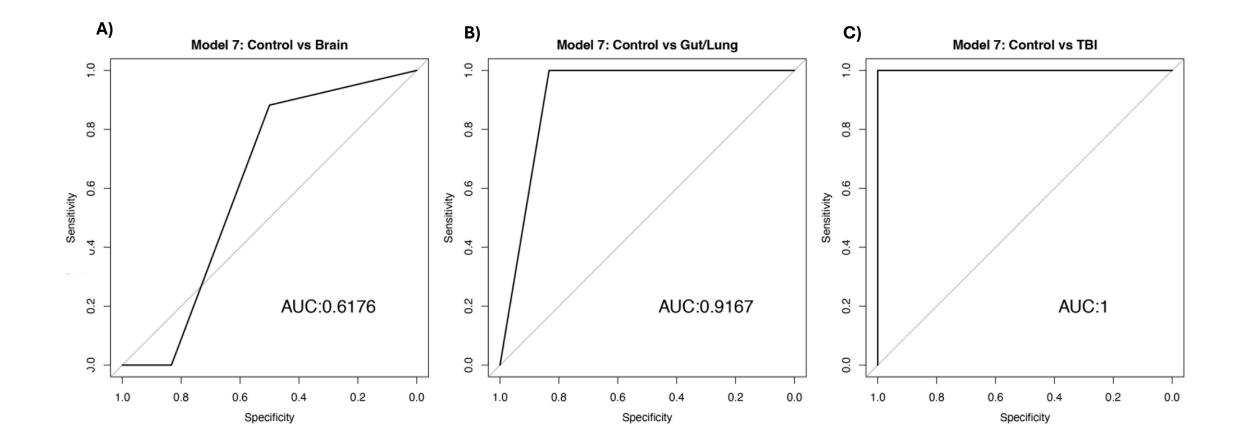
Radiation Exposure Paradigms

Expression Profile of Significantly Altered Proteins

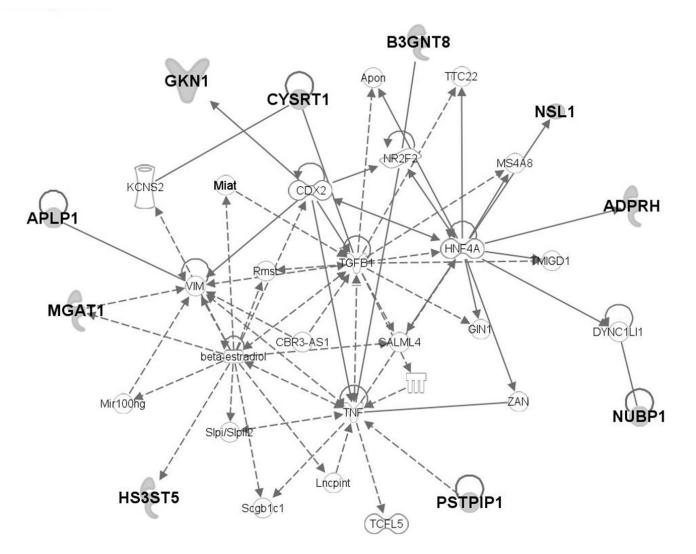
Algorithm Building for Models of Radiation Exposure

Model 1		Model 3		Model 6		Model 7	
Treatment Group	Proteomic panel	Treatment Group	Proteomic panel	Treatment Group	Proteomic panel	Treatment Group	Proteomic pane
Control	CYSRT1	Control	CYSRT1	Control	CYSRT1	Control	GKN1
Exposure	COL10A1	Brain	IGH	Brain	GKN1	Brain	CYSRT1
•				Gut	APLP1	Gut/Lung	APLP1
Model 2		Model 4		Lung	PSTPIP1	TBI	PSTPIP1
				ТВІ	ACOT12		ANGPT2
Treatment Group	Proteomic panel	Treatment Group	Proteomic panel		CNN2		EDIL3
Control	CYSRT1	Control	GNPTG		EDIL3		GSN
ТВІ	NRP2	Gut	RBP4		IL5		HS3ST5
Partials	APLP1	Gut			RUNX3		IL5
raitiais	EDIL3			-	MADCAM1		ADPRH
	B3GNT8	Мо	Model 5		EYA2		IGH
	IGH	Treatment Group	Proteomic panel	-	NTRK3		NTRK3
	NSL1	Control	GNPTG		SURF1		EPHB2
	NAALADL1	Lung	GOLM2		B3GNT8		B3GNT8
	BTG2	Lung	GOEIWIZ		NSL1		MADCAM1
	5162				GMPS		NUBP1
					IGH		MGAT1
					ADPRH		NSL1
					OASL		OASL

Model 1							
Control Exposure		Control Exposure					
Control 14 0		Control 3 3					
Exposure 0 120		Exposure 2 57					
Overall Accuracy 100		Overall Accuracy 92.3					
Model 2							
Training Data Set		Test Data Set					
Control Partial	ТВІ	Control Partial TBI					
Control 14 0	0	Control 3 3 0					
Partial 0 84	0	Partial 2 39 0					
TBI 0 0	36	TBI 0 0 18					


Radiation Exposure Prediction Algorithms

Model 3							
Training Data Set	Test Data Set						
Control Brain	Control Brain						
Control 14 0	Control 3 3						
Brain 0 36	Brain 2 15						
Overall Accuracy 100	Overall Accuracy 78.3						
Mc	odel 4						
Training Data Set	Test Data Set						
Control Gut	Control Gut						
Control 14 0	Control 4 2						
Gut 0 24	Gut 0 12						
Overall Accuracy 100	Overall Accuracy 88.9						
Mc	odel 5						
Training Data Set	Test Data Set						
Control Lung	Control Lung						
Control 14 0	Control 5 1						
Lung 0 24	Lung 0 12						
Overall Accuracy 100	Overall Accuracy 94.4						


Radiation Exposure Prediction Algorithms

Model 6											
Training Data Set				Test Data Set							
	Control	Brain	Gut	Lung	тві		Control	Brain	Gut	Lung	ТВІ
Control	14	0	0	0	0	Control	3	3	0	0	0
Brain	0	36	0	0	0	Brain	2	15	0	0	0
Gut	0	0	24	0	0	Gut	0	0	8	4	0
Lung	0	0	0	24	0	Lung	0	0	2	10	0
ТВІ	0	0	0	0	36	ТВІ	0	0	0	0	18
Overall A	ccuracy	100				Overall A	ccuracy	83.1			
					M	lodel 7					
Training Data Set				Test Data Set							
	Control	Brain	Gut/Lung	тві			Control	Brain	Gut/Lung	TBI	
	Control	Druin									
Control	14	0	0	0		Control	3	2	1	0	
Control Brain			-	0 0		Control Brain	3 2	2 15	1 0	0 0	
	14 0	0	0	-			2		_	-	
Brain	14 0	0 36	0	0		Brain	2	15	0	0	

Model 7

Model 7 Algorithm Proteins: Pathway Analysis

Model 7 Algorithm Proteins: Pathway Analysis

Ingenuity Pathway Analysis							
Top Diseases and BioFunctions:							
Diseases and Disorders							
	p value range	# Molecules					
Organismal Injury and Abnormalities	4.99E-02 - 6.11E-05	19					
Infectious Diseases	3.78E-02 - 7.91E-05	7					
Hypersensitivity Response	4.39E-02 - 2.69E-04	2					
Cancer	4.99E-02 - 5.89E-04	19					
Dermatological Diseases and Conditions	4.39E-02 - 5.89E-04	6					
Molecular and Cellular Functions							
	p value range	# Molecules					
Cell Signaling	2.33E-02 - 6.97E-06	8					
Cell Morphology	4.84E-02 - 2.18E-05	7					
Cellular Assembly and Organization	4.99E-02 - 3.21E-05	10					
Cell-to-Cell Signaling and Interaction	4.99E-02 - 3.63E-05	11					
Cellular Movement	4.77E-02 - 3.63E-05	8					
Physiological System Development and Function							
	p value range	# Molecules					
Cardiovascular System Development and Function	4.46E-02 - 2.18E-05	8					
Organ Development	4.92E-02 - 2.18E-05	8					
Organ Morphology	4.54E-02 - 2.18E-05	6					
Skeletal and Muscular System Development and Function	4.99E-02 - 2.18E-05	7					
Nervious System Development and Function	4.99E-02 - 3.21E-05	7					

- Demonstrated identification of novel proteomic signatures for prediction of TBI and organ specific partial body radiation exposure with good predictive accuracy
- Highlight the need for partial body/heterogeneous exposure models -> best model for future radiation exposure scenarios
- Challenges of prediction of partial body exposures due to inherent biological limitations of radiation injury
- Potential utility of developing organ specific biomarkers to identify acute partial body exposures

- Nomenclature standardization within the MCM research community
- Very diverse meanings within "Partial body" radiation exposure animal models:

Partial body: TBI with 2.5% bone marrow sparring

Partial body: Gross % body fractions

Partial body: Organ specific exposure

• Need for normalization of terms

- This research was supported in part by funding from the Radiation and Nuclear Countermeasures Program, #Y2-OD-0332-01 NIAID, and by the Intramural Research Program, NCI/NIH
- Uma Shankavaram PhD / Radiation Oncology Branch: Bioinformatics Core, NCI/NIH
- Yu Fan PhD, Qingrong Chen PhD, Daoud Meerzaman PhD / Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics & Information Technology, NCI/NIH
- Contact Info: Mary Sproull PhD sproullm@mail.nih.gov