NIST X-RAY (10 kV to 300 kV) Air-Kerma Calibration Service

> by Michelle O'Brien Physicist, Dosimetry Group

> > STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

protection and per alization of the

MQSA medical traceability

diagnostic and therapeutic radiology

dose traceability for radiation protection and personnel dosimetry

NIST Mission: To promote U.S. innovation and industrial competitiveness by advancing measurement science, standards, and technology in ways that enhance economic security and improve our quality of life.

Disclaimer

Certain commercial equipment, manufacturers, instruments, or materials are identified in this presentation in order to specify the experimental procedure adequately. Such identification is for informational purposes only and is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the manufacturer, materials, or equipment are necessarily the best available for the purpose.

17025 Quality Management System

NIST QMI 4.1 Impartiality 4.1.1 Impartiality NIST conducts its measurement services in a fair and open-minded manner that is free of conflict of interests, bias or prejudice ensuring impartiality in the operations and measurements of the laboratory.

NIST QMI 4.2 Confidentiality 4.2.1 NIST is legally obligated to provide protection of confidential or proprietary information obtained or created during the performance of laboratory measurement services activities. Department of Commerce NIST PML Radiation Physics Division *Dosimetry Group*

Mission: To develop standards by realizing the SI unit of dose, the gray, and advance the measurement of quantities important in the radiological sciences through programs in the dosimetry of x rays, gamma rays, electrons and other charged particles.

 $1 \text{ Gy} \equiv 1 \text{ J} / \text{kg}$

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY U.S. DEPARTMENT OF COMMERCE

NIST STANDARDS AND TEC

ONAL INSTITUTE OF IDARDS AND TECHNOLOGY EPARTMENT OF COMMERCE

ATIONAL INSTITUTE OF IANDARDS AND TECHNO 5. DEPARTMENT OF COMMI

N

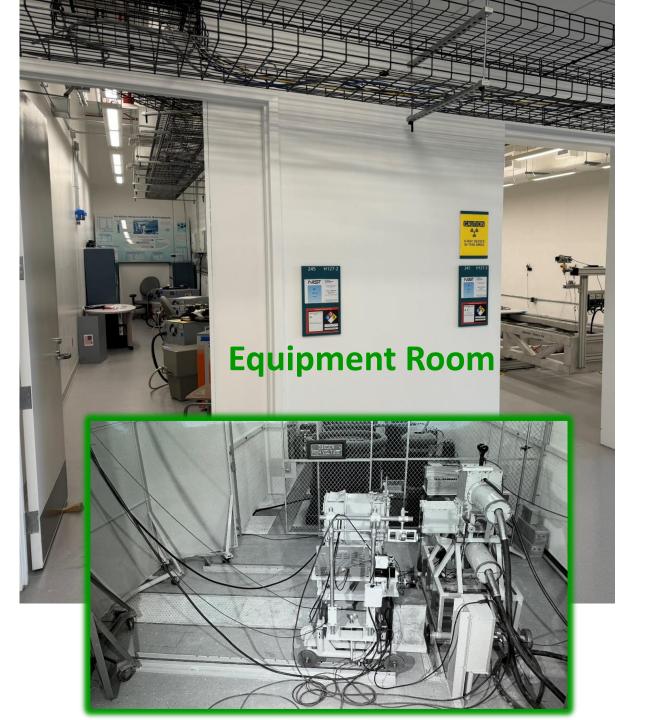
Radiation Physics Building

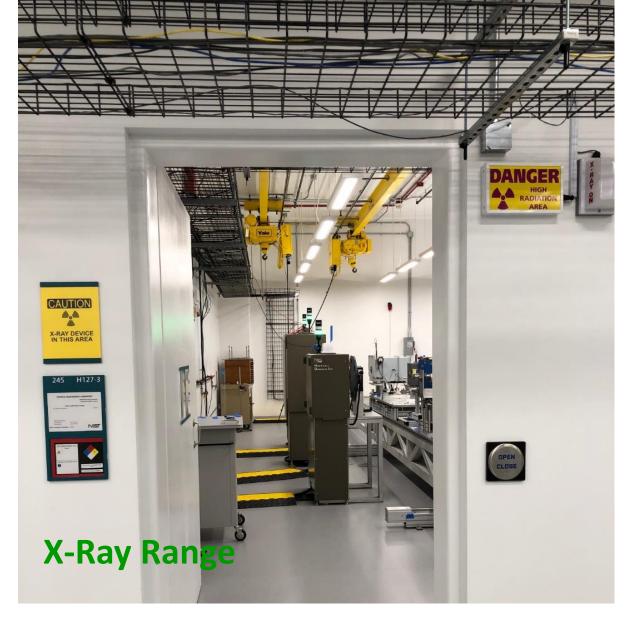
NIST Gaithersburg, MD H-wing of the Radiation Physics Building 245

Calibration and Measurement Capabilities (CMCs)

The goal for **Medical Physics Applications** is to provide traceability of radiation dose to clinical end users to ensure safety and efficacy of diagnostic and therapeutic procedures that involve ionizing radiation.

- 17025 and 17043 Quality management system
- BIPM.RI(I)-K2: Low energy x ray (10 kV to 50 kV)
- BIPM.RI(I)-K3: Medium energy x ray (50 kV to 300 kV)
- BIPM.RI(I)-K7: Mammography
- AAPM ADCL traceability and TG-61
- ISO 4037: Reference Radiation x-ray beams
- FDA-MQSA
- ANSI: personnel dosimetry performance standards, DHS

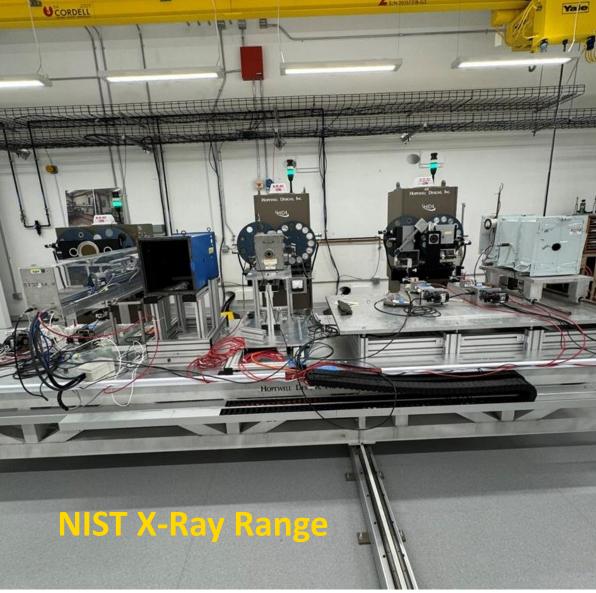

Control Room


.

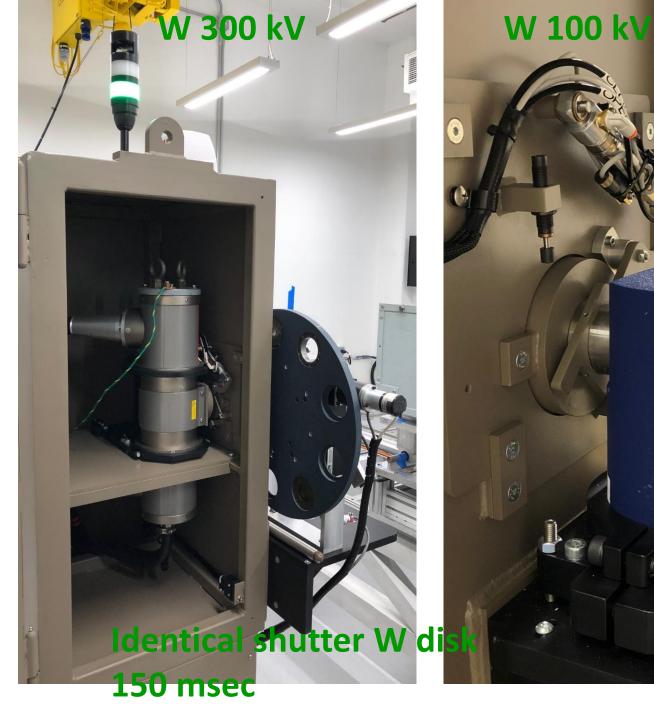
....

11

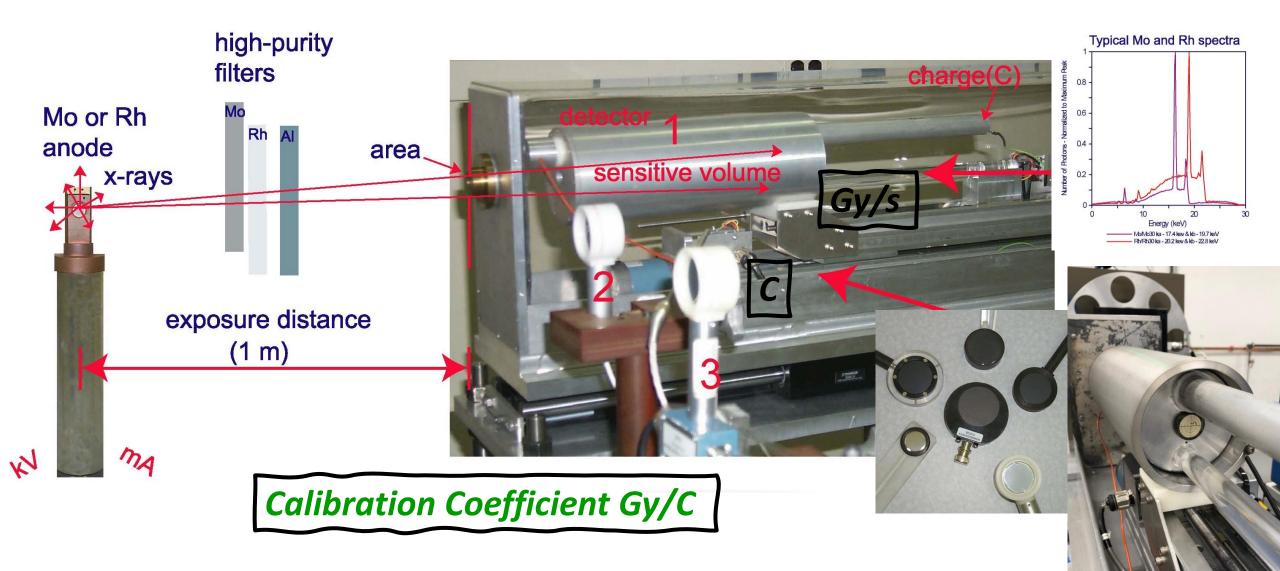
HU .

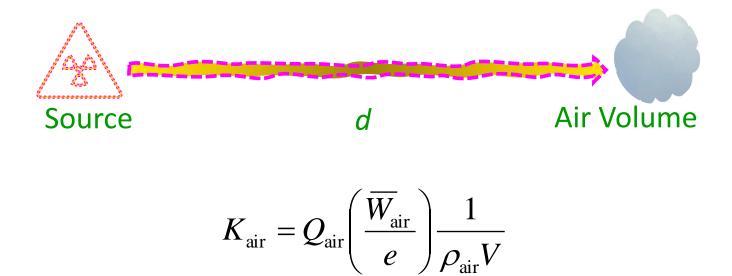

100 kV

mammography


Three sub-basement spaces became one first floor facility

300 kV

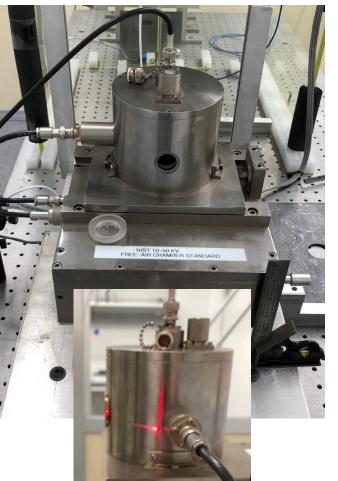




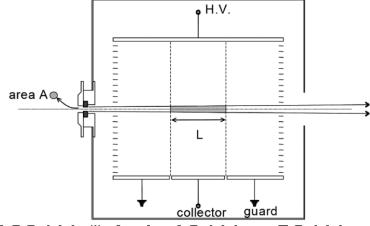
Air-Kerma Rate (Gy/s) Measurement

Dosimetry of X Rays (*E* < 300 keV)

KERMA = <u>K</u>inetic <u>Energy</u> <u>R</u>eleased per unit <u>MA</u>ss

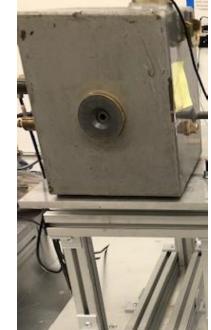

Secondary electrons represent liberated charge in a given mass of air

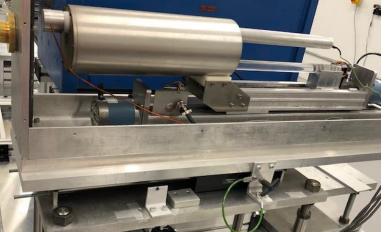
$$\mathbf{C} \cdot \left[33.97 \frac{\mathbf{J}}{\mathbf{C}} \right] \cdot \frac{1}{\mathrm{kg}} = \frac{\mathbf{J}}{\mathrm{kg}} = \mathrm{Gy}$$


Air kerma can be measured absolutely with a free-air ionization chamber

NIST Primary Free-Air Ionization Chambers

Electronic Brachytherapy Lamperti 10 kV to 60 kV Air-path length 39 mm





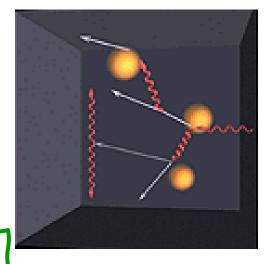
 Wyckoff-Attix 60 kV to 300 kV * Ritz 10 kV to 100 kV * Attix 10 kV to 50 kV

 308 mm
 127 mm
 212 mm

The SI unit of dose, Gy, Air-Kerma Rate (Gy/s) as Realized by Free-Air Chambers

$$\dot{K} = \frac{I}{\rho_{\text{air}}V} \frac{W_{\text{air}}}{e} \frac{1}{1 - g_{\text{air}}} \prod_{i} k_{i}$$

 \dot{K} is the air-kerma rate at a given distance in air.


 $I/(\rho_{air}V)$ is the measured ionization current divided by the mass of air in the measuring volume.

 W_{air} is the mean energy expended by an electron of charge *e* to produce an ion pair in dry air. The value used at NIST is $W_{air}/e = 33.97$ J/C.

 g_{air} is the fraction of the initial kinetic energy of secondary electrons dissipated in air through radiative processes, which is 0.0 (negligible) for x rays with energies less than 300 keV.

 $\prod k_i$ is the product of various correction factors.

Range of corrections: 0.983 to 1.13 Air attenuation: 1.005 to 1.05

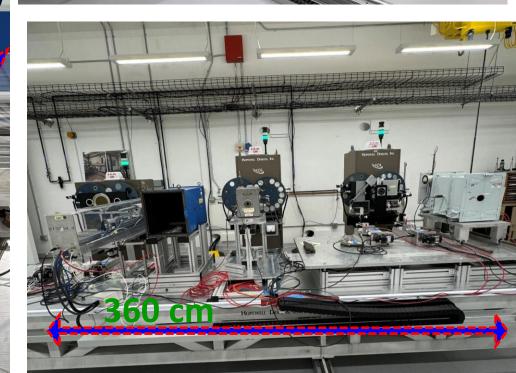
Three X-Ray Beam Lines

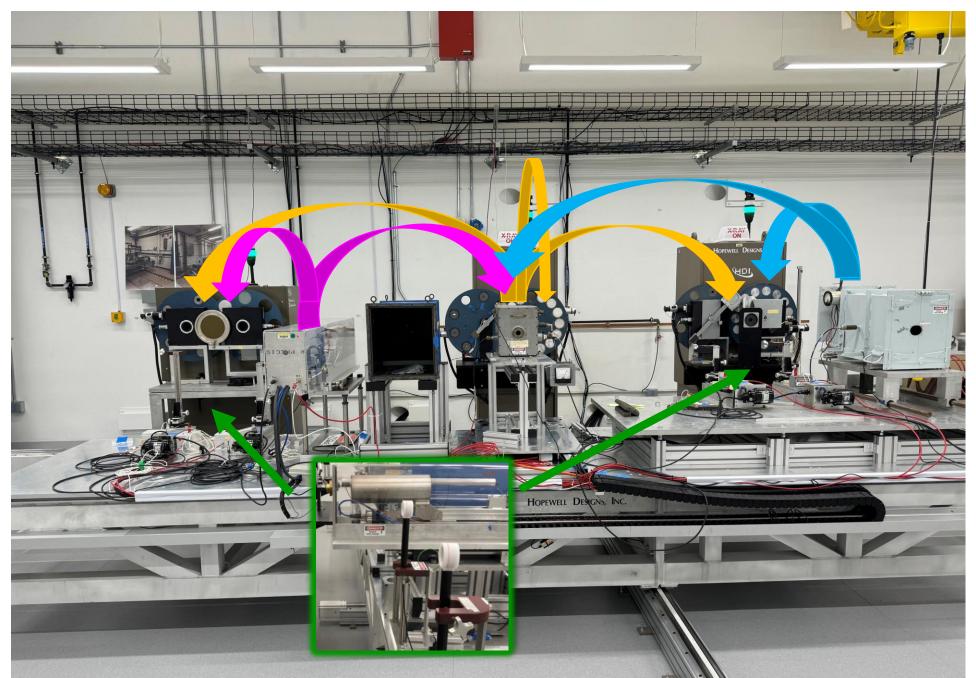
910 cm

DANISER

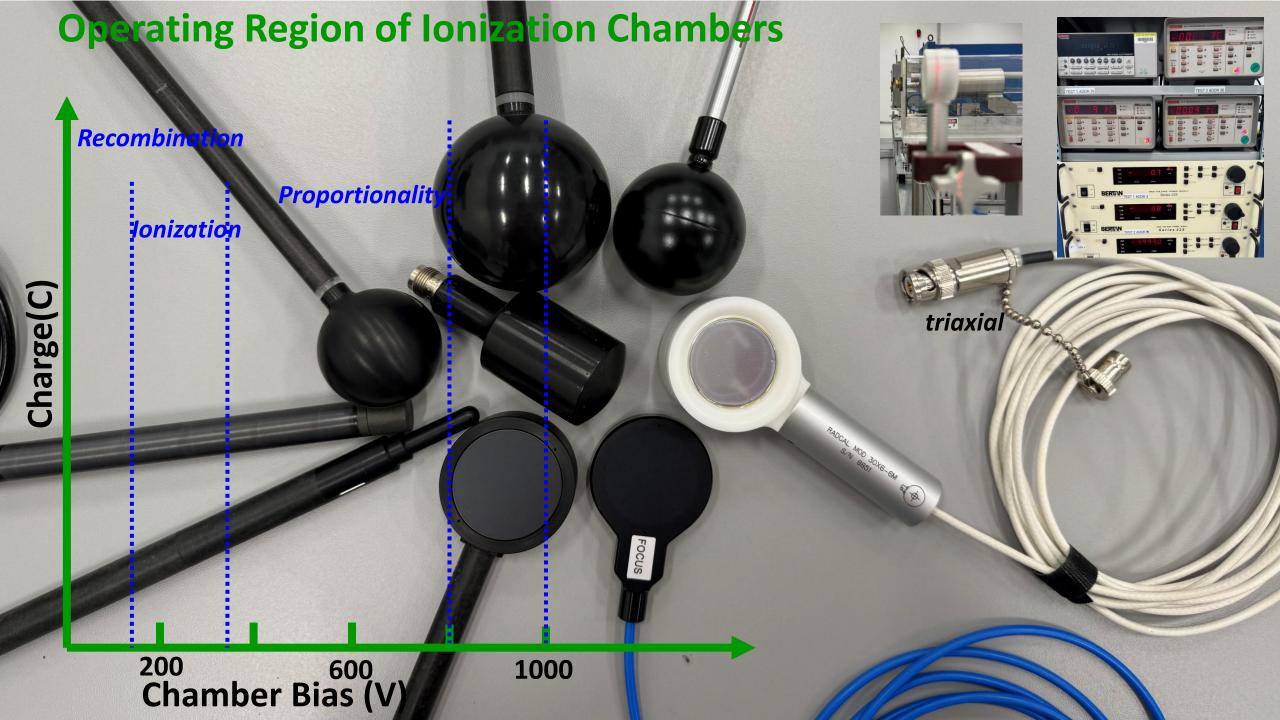
DANGER

TAGE

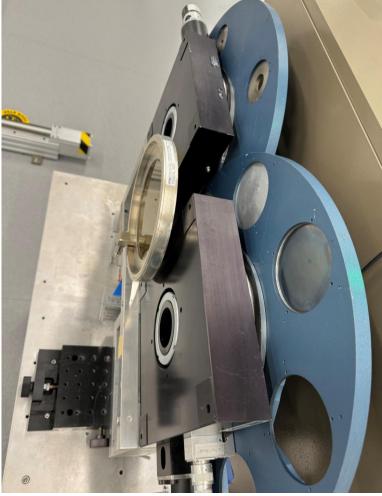

lin


Beam geometry 10 cm @ 1m

3


Rh

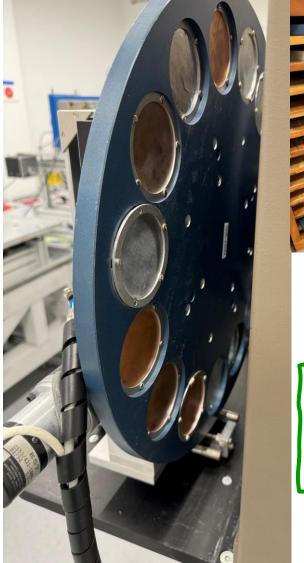
129.5 cm 50 cm to 370 cm o detector distance



Two pair of test chamber positions

NIST MQSA Beam

Parameters



CIRMS History: 1994 MPD A.1

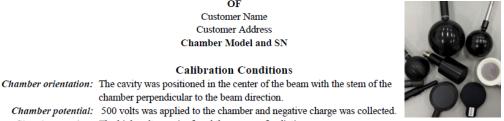
Beam code	Tube voltage (kV)	Filtration (mm)	Half-value layer (mm Al)
Mo Anode			
Mo/Mo23	23	0.032 Mo	0.288
Mo/Mo25	25	0.032 Mo	0.313
Mo/Mo28	28	0.032 Mo	0.346
Mo/Mo30	30	0.032 Mo	0.370
Mo/Mo35	35	0.032 Mo	0.404
Mo/Rh28	28	0.029 Rh	0.420
Mo/Rh32	32	0.029 Rh	0.453
Mo/Mo25x	25	0.030 Mo + 2.0 Al	0.551
Mo/Mo28x	28	0.030 Mo + 2.0 Al	0.589
Mo/Mo30x	30	0.030 Mo + 2.0 Al	0.633
Mo/Mo35x	35	0.030 Mo + 2.0 Al	0.715
Rh Anode			
Rh/Rh25	25	0.029 Rh	0.351
Rh/Rh30	30	0.029 Rh	0.438
Rh/Rh35	35	0.029 Rh	0.512
Rh/Rh40	40	0.029 Rh	0.559
Rh/Rh30x	30	0.029 Rh + 2.0 Al	0.814
Rh/Rh35x	35	0.029 Rh + 2.0 Al	0.898

NIST H Series Beam

Parameters

	Beam code		Additiona	l filtration		Half-value layer (H)	
		Al (mm)	Cu (mm)	Sn (mm)	Pb (mm)	Al (mm)	Cu (mm)
	H10	0.105				0.051	
	H15	0.5				0.16	
	H20	1.01				0.36	
	H30	4.50				1.2	
	H40	4.53	0.26			2.93	
	H50	4.0			0.1	4.16	0.14
	H60	4.0	0.61			6.06	0.25
	H100	4.0	5.2			13.51	1.15
//	H150	4.0	4.0	1.51		16.93	2.43
	H200	4.0	0.6	4.16	0.77	19.72	4.1
	H250	4.0	0.6	1.04	2.72	21.59	5.19
	H300	4.1		3.0	5.0	23.55	6.19

CIRMS History: 1998 MPD A.5 M80 and M120 diagnostic x-ray Beam Series NIST L, M, & H ISO 4037 CCRI – BIPM


Mammography: (Mo/Mo, Mo/Rh, Rh/Rh) Mammography with W/ (Ag, Mo, Rh, Al)

REPORT OF AIR-KERMA CALIBRATION

OF

Customer Name Customer Address Chamber Model and SN

Calibration Conditions

chamber perpendicular to the beam direction. Chamber potential: 500 volts was applied to the chamber and negative charge was collected. Chamber rotation: The high voltage wire faced the source of radiation.

Background current: The background current is less than 0.01 % of the exposure current.

Current ratio: The current ratio at the full to half collection potential is 1.003 using the S60 beam. Calibration date: Date range

Temperature range: 294.2 K (21.1 °C) to 294.6 K (21.5 °C) Pressure range: 99.8 kPa to 100.1 kPa

RESULTS

Beam Code	Half-Value		Calibration Coefficient (Gy/C)	Air-Kerma	Beam	Calibration
	Layer		at 295.15 K (22 °C) and	Rate	Diameter	Distance
	mm Al	mm Cu	101.325 kPa (1 Atm)	(Gy/s)	(cm)	(cm)
M150	10.30	0.66	1.034E+06	4.48E-04	10	100
M200	14.73	1.64	1.042E+06	4.98E-04	10	100
M300	21.77	5.3	1.058E+06	1.84E-04	10	100
S60	2.81	0.09	1.037E+06	3.82E-04	10	100

Expanded, Combined Uncertainty, in Percent

Beam Code	Air-Kerma Rate (Gy/s)	Calibration Coefficient (Gy/C)
M150	0.91	0.93
M200	0.92	0.94
M300	0.92	0.95
S60	0.92	0.94

The results relate only to the instrument calibrated in this report.

Dosimetry Group Number DG:12345-YR NIST ID 46011C Order Number: 682.02/O-0000012345 Report Date: MM/DY/YR Page 2 of 8

X-ray air kerma uncertainties				
Components Type Type A B				
Primary standard				
air density	0.01	0.07		
FAC stdev charge	0.02	0.06		
humidity		0.03		
volume	0.04	0.01		
g		0.02		
W/e (ICRU90)		0.35		
ICRU90 kiikw		0.05		
air attenuation, k	0.05	0.02		
electric field distortion		0.20		
electron loss, k _e		0.10		
penetration of aperture		0.04		
penetration of chamber face		0.01		
polarity difference	0.05			
recombination loss, ks	0.10			
fluorescence k _{fl}		0.03		
scattered photons, k _p		0.07		
quadratic sum	0.13	0.44		
combined standard uncertainty	0.46			
FAC expanded uncertainty 0.92				
Test Chamber				
air kerma rate	0.13	0.44		
air density	0.01	0.07		
Test stdev charge	0.06	0.06		
distance	0.01			
humidity		0.03		
radiation background				
quadratic sum	0.14	0.45		
combined standard uncertainty 0.47				
Test expanded uncertainty	0.94			

Calibration: chamber ships to NIST

NIST delivers calibration report with a Calibration Coefficient (Gy/C) and uncertainty to customer.

REPORT OF PROFICIENCY TEST FOR AIR-KERMA CALIBRATIONS

OF Customer Name Customer Address Radiation Detection Chamber: NIST chamber Model and SN

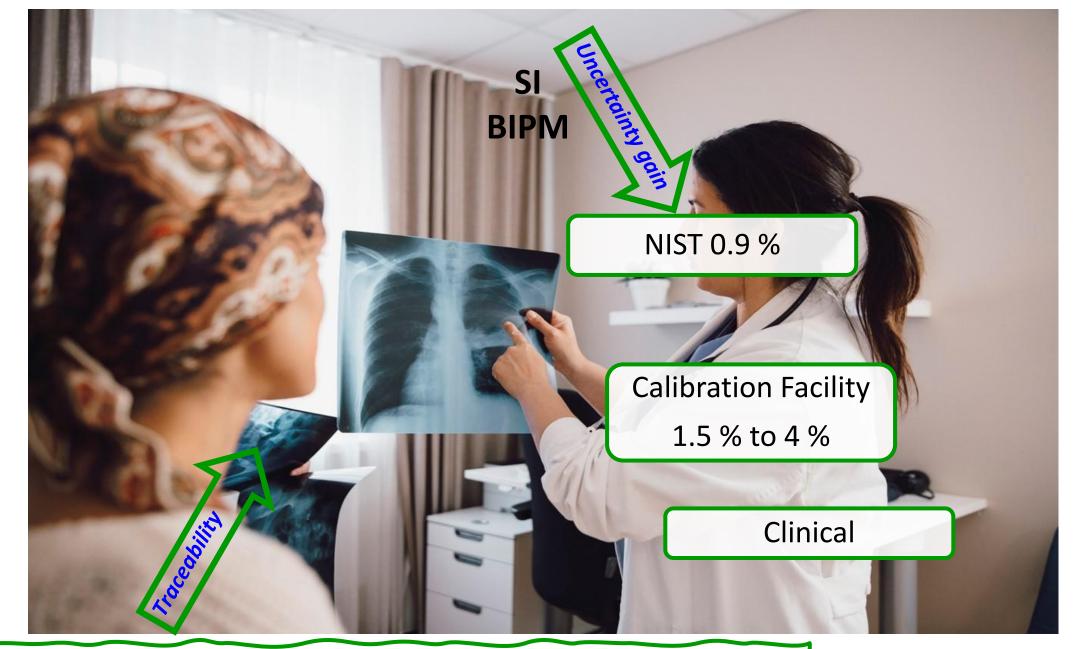
Participant's Calibration Conditions as reported by Participant

Calibration distance: Chamber orientation: Chamber collection potential: Chamber rotation: Beam size: Nominal Air-Kerma rates: Uncertainty:

Customer provided data

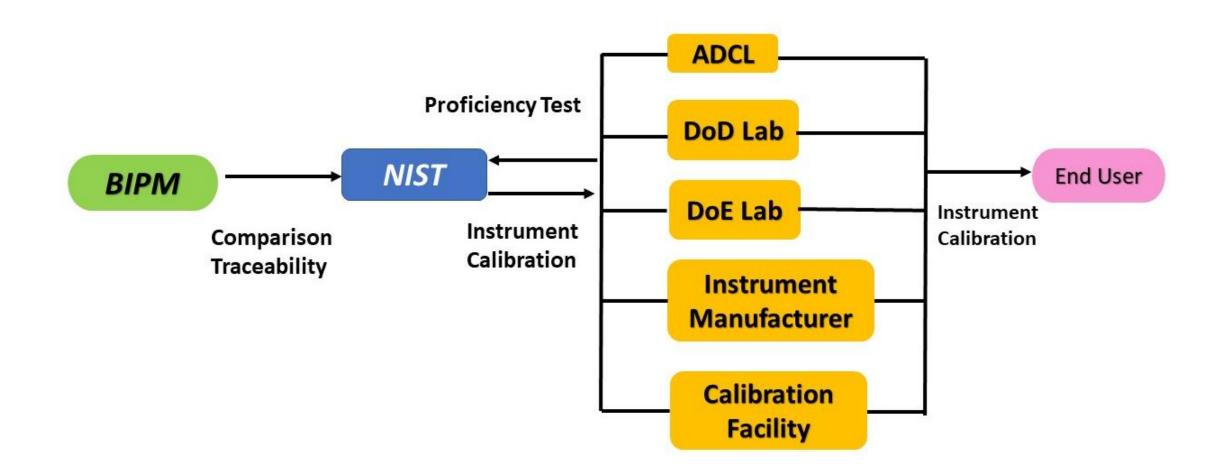
Comparative Results for the NIST Transfer Standard

NIST	NIST Calibration Coefficient	Participant Calibration Coefficient	Difference
Beam Code	295.15 K (22 °C) and 101.325 kPa (1 Atm)	295.15 K (22 °C) and 101.325 kPa (1 Atm)	in Percent
	(Gy/C)	(Gy/C)	(%)
Mo/Mo23	NIST CC	Customer CC	-0.05
Mo/Mo25	NIST CC	Customer CC	-1.44
Mo/Mo28	NIST CC	Customer CC	-0.60
Mo/Mo30	NIST CC	Customer CC	-1.16
Mo/Mo35	NIST CC	Customer CC	0.33

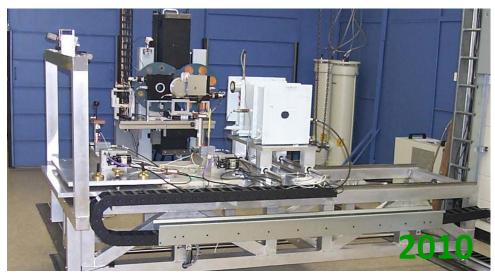

Dosimetry Group Number DG:12345-YR NIST ID 46050S Order Number: 682.02/O-0000012345-YR Report Date: MM/DY/YR Page 4 of 13

FDA MQSA
Calibration: +/-6 %
PT: +/- 3 %
2-year frequency

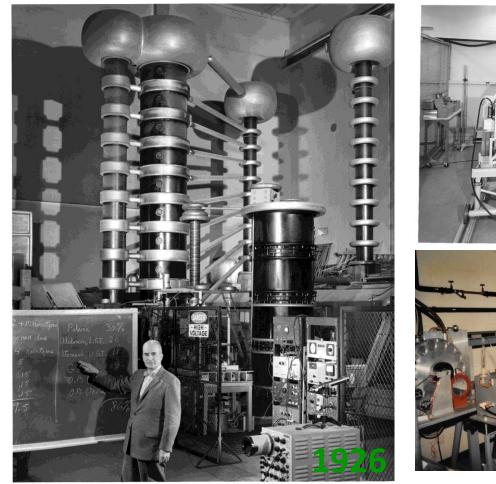
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

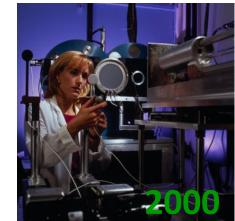

NIST technical support for the Mammography Quality Standards Act (MQSA)

Quantity	MQSA Final Regulation Citation	Regulation of	NIST Support	
Beam quality (HVL)	900.12(e)(5)(<i>iv</i>)	Operating Voltage (kV) 20 25 30	Minimum HVL (mm Al) 0.20 0.25 0.30	17 reference beam qualities between 23 kVp and 40 kVp
Dose	900.12(e)(5)(<i>vi</i>)	Cannot exceed 3.0 mG Instruments used by medical phys	y (0.3 rad) per exposure icists in their annual survey to	Air-kerma calibration Air-kerma calibration
Instrument calibration	900.12(e)(12)	measure the air kerma or air kerm shall be calibrated at least once ex instrument is repaired. The instr traceable to a national standard an percent (95 percent confidence lea range.	and technical support to calibration facilities	
Radiation output	900.12(e)(5)(x)	Minimum output of 4.5 using Mo/Mo28 at any SID where with the detector center located 4. surface with compression paddle i the system, under the same meas producing a minimum output of 7.0	Air-kerma calibration	
Traceability	900.2(<i>xx</i>)	Instrument must be calibrated at either NIST or at a calibration laboratory that participates in a proficiencytest with NIST at least once every 2 years and the agreement must be within +/- 3 % of the NIST value.		NIST proficiency test
KVp	900.12(e)(5) <i>ii</i>	Cannot exceed +/- 5%	Proposed calibration service	


A calibration provides traceability. A proficiency test demonstrates ability to transfer air kerma but requires a linking calibration.

Measurement Traceability for X-Ray Air-Kerma




X-ray Air-Kerma Calibration Capabilities over the decades

