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Motivation

* Explosive growth of semiconductor industry changing the very fabric of society.

Technology: Growth and Impact, MM. Crapis, §2019). Zeutek.com




How?
* Lots of reasons...
» Key Fuel - faster and cheaper fundamental building blocks (transistors).
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*technology node has become a marketing tool rather than a real physical feature description




Transistor operation for logic (MOSFET)

* Metal-oxide-silicon/semiconductor field-effect-transistor. OFF — No Current
* Basic operation all comes down to 1’s and 0’s (on and off). Gate
Electrode
Insulator
p* Substrate

What makes a
7 ” . On - Yes Current
better” transistor? ——

Electrode

Insulator

—

p* Substrate

CMOS: Complimentary metal-oxide-semiconductor — mix of MOSFET “flavors” (nMOS & pMOS).



Why defects matter
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Map by Rick N. Bruns
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@%ﬁ%ﬁ% - sprites and posters for the NES.

Paypal: Rick@NintendoMaps.com

Feel free to send a donation to
help support the creation of more
maps for classic NES games.

New device, technology, material, etc. (if you're lucky).
Ex. badly damaged due to radiation.
Only getting more complicated.
Practice makes perfect.



The Semiconductor Industry — Defect Problem
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Electron Paramagnetic Resonance; an Imperfect Analogy...
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Experimental Modes...

* Conventional Electron

Paramagnetic/Spin Resonance
e Unrivaled access to atomic scale chemical
and physical nature.
* Large area/volume samples.
e Great for “simple” material structures.

* Electrically Detected Magnetic
Resonance (EDMR)

* Detect EPR via resonance induced change in
device current.

* Fully processed nanoscale devices.

 Same EPR information directly linked to
device operation.

* Many modes of operation (specialized
information).

What information are we after?



Example 1: Conventional EPR, Interface Defects Si/SiO,

IEEE Transactions on Nuclear Science, Vol. NS-28, No. 6, December 1981

RADTATION-INDUCED TRIVALENT SILICON DEFECT BUILDUP AT Gate
THE Si"SiO2 INTERFACE IN MOS STRUCTURES
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Example 2: Conventional EPR, oxide defects Si/SiO,
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Hole traps and trivalent silicon centers in metal/oxide/silicon devices
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FIG. 3. ESR traces of identical samples {a) after exposure to 10 Mrad of Co™
y-irradiation and [b) before exposure. The sample gates were positively bi-
ased to 20 V dunng irradiation. The £ center resonance is observed in (al

FIG. 4. Distributions of £° and 4 ¥, C,, /e vs irradiation dose for MOS
structures with oxides grown in dry oxygen and subjected 10 a nitrogen an-
meal.



Example 3: Conventional EPR, interface and oxide defects Si/SiO,/HfO,

2272 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 52, NO. 6, DECEMBER 2005

Identification of the Atomic Scale Defects Involved
in Radiation Damage in HfO9 Based MOS Devices

J. T. Ryan, Student Member, IEEE, P. M. Lenahan, Member, IEEE, A. Y. Kang, Member, IEEE,
I. F. Conley, Ir., Senior Member, [EEE, G. Bersuker, Member, IEEE, and P. Lysaght
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Fig. 1. Pre-imadiation (below) and post-irradiation (above) narrow scan
ESR traces indicating the generation of large (10 12fem?) densities of Py,
like Si/dielectric interface traps in the HfCl; precursor (sample set 1) HfO,
dielectric film on Si0./silicon, (Weak signals are present in the pre-irradiation
traceatg = 2,006.g = 2,0035, and g = 2.0003 which are respectively due
to Py, like interface traps, Py, like interface traps and E’ like oxygen deficient
silicon near interface traps.)
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Fig. 2. Pre-irradiation {(above) and post-irradiation (below) wide scan ESR
traces indicating the generation of several defects in the Hf (NOy ),y precursor
(sample set 2) HfO; dielectric film on H-terminated silicon. The two peaks on
the left are (mostly) due to an O coupled to a hafnium ion (the central peak
includes a small contribution from Py, centers). The peak on the far right is
likely due to an oxygen vacancy in the HfO. In these traces, the spectrometer
settings have been set to optimize the O, and oxygen vacancy spectra.
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*much more complicated system
due to “smeared” interfacial region
and presence of hafnium.
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Example 4: EDMR, variety of modes

and device structures

428 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 66, NO. 1, JANUARY 2019

A New Analytical Tool for the Study of Radiation
Effects in 3-D Integrated Circuits: Near-Zero Field

Magnetoresistance Spectroscopy

James P. Ashton™, Studenr Member, IEEE, Stephen J. Moxim, Student Member, IEEE,
Patrick M. Lenahan, Fellow, IEEE, Colin G. McKay, Student Member, IEEE,

Ryan 1. Waskiewicz™, Student Member, IEEE. Kenneth J. Myers™ | Student Member, IEEE,

Michael E. Flatté™, Member, IEEE, Nicholas J. Harmon, and Chadwin D. Young ™, Member, IEEE
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Fig. 8. Low field and frequency (151 MHz) EDMR and NZFMR response
for planar Si/SiO» gated diodes for preirradiation (bottom blue) and postir-
radiation (top red) utilizing dc /-V. The forward bias used was 0.33 V. The
modulation amplitude was 0.3 mT. The RF source output power used was
approximately 1 W. The spectra are offset from one another by —1.25 pA/mT.
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Fig. 16. Low field and frequency (360 MHz) EDMR and NZFMR. response
for a-Si0OC:H dense samples for preirradiation (blue line) and postirradiation
(black line) utilizing SDTAT. The modulation amplitude was 0.3 mT. The RF

source output power used was approximately 40 mW.
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Fig. 10. Low field and frequency (365 MHz) EDMR and NZFMR response
for lateral SiGe MOSFETSs for preirradiation (top blue) and postirradiation
(bottom red) utilizing SDCP. The charge-pumping frequency was | MHz and
the pulse height used was 1.6 Vpp. The modulation amplitude was | mT.
The RF source output power used was approximately 40 mW. The figures are
normalized to illustrate differences in a line shape.
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Fig. 14. Low field and frequency (72 MHz) EDMR and NZFMR response
for 5i07-based flowable oxides for preirradiation (bottom blue) and postir-
radiation (top red) utilizing SDTAT. The wnneling current was 2.2 uA. The
modulation amplitude was 0.35 mT. The RF source output power used was
approximately 20 mW. Note that the EDMR response is below the detection
limit. Equivalent traces with RF turned off are identical. The spectra are offset
from one another by —125 pA/mT.
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Fig. 12. Low field and frequency (375 MHz) EDMR and NZFMR response
for Si FinFETs with a preirradiation (bottom blue) and postirradiation (top
red) wilizing de I-V. The forward bias used was —0.5 V. The modulation
amplitude was 0.5 mT. The RF source output power used was approximately
40 mW. The spectra are offset from one another by —0.18 pA/mT.
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Resources

Bruker ELEXSYS spectrometer.
* Conventional X-band ESR or EDMR.

* Cryogen-free helium and nitrogen
variable temp. (4 K - 1000 °C).

* Programable goniometer.

e |n-situ UV irradiation.

1.5x homemade EDMR
spectrometers.
* Multipurpose/reconfigurable.
* Zero field through X band.
* SDR, SDT, SDCP, BAE, etc...

Semiauto wafer prober w/ full
IV, pulsed, and CV hardware.

Manual wafer prober w/ full IV,
pulsed, and CV hardware.

* Configurable to wafer-level EDMR
system.

Staff

* Jason Ryan (Pl) and Steve moxim
(NRC PD).

e Countless int./ext. collaborators.




Summary

* Explosive growth of semiconductor industry changing fabric of society.
» fueled by “faster-cheaper-better” fundamental building blocks

* As technology advances defects become increasingly more important.

* Individual atomic-scale defects matter (size).
* Extremely complex materials systems.
* Generated through normal use, including radiation exposure.

* Electron paramagnetic resonance a very powerful tool.

* Understand chemical and physical nature.
* Link back to actual device performance and operation.
* Many examples of utilizing EPR to understand radiation damage at device/material level.

* Many example of utilizing EPR to understand radiation damage at
device/material level.
* Simple planar Si/SiO, MSOFETs through modern highly-complex 3D transistors.
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Example 5: EDMR, specialized per needs due to increased complexity...

228 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 67, NO. 1, JANUARY 2020

Observation of Radiation-Induced Leakage Current
Defects in MOS Oxides With Multifrequency
Electrically Detected Magnetic Resonance and

Near-Zero-Field Magnetoresistance

Stephen J. Moxim"™', Member, IEEE, James P. Ashton, Member, IEEE. Patrick M. Lenahan, Fellow, IEEE,
Michael E. Flatté™, Member, IEEE, Nicholas J. Harmon™, and Sean W. King, Member, IEEE
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Fig. 9. Postirradiation, high-frequency SDTAT EDMR trace with magnetic
field oriented perpendicular to the (100) plane (curve A). Derivative of
simulated EPR trace with a 78% Py and 22% FPpy center contribution
(curve B). Derivative of simulated EPR trace with a 77% Ppo and 21% Py,
and 2% E’ center contribution (curve C).

@ (b)

Metal | Dielegtric™y Semiconductor Semiconductor

Fig. 1. Tllustration of SDTAT. Tunneling is allowed from one defect to the
other if spin angular momentum is conserved. Tunneling from one defect to
the other is forbidden if angular momentum is not conserved. (a) However,
if electromagnetic radiation satisfying the resonance condition is present, that
radiation can “flip” paramagnetic defect spins, rendering previously forbidden
tunneling events allowed (b), thereby increasing current across the dielectric.
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How?

e Size and cont
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Physical Basis For ESR (simplified)

Energy

hv

H,

Magnetic

Field
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Eme=11/2) = +5€BHr
AE = hv =g fH.
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E(MS:—1/2) - = EgBHr
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Physical Basis For ESR (simplified)

Parallel

Perpendicular
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