Imaging and Radiation Oncology Core's development of a remote credentialling system for FLASH radiotherapy.

Hayden Scott, MS CIRMS Presentation

Making Cancer History®

Imaging and Radiation Oncology Core

Imaging and Radiation Oncology Core (IROC) QA Centers provide **quality assurance** for **clinical trials** in the US

IROC Core Services

- Site qualification
- Trial Design Support
- Credentialing
- Data management
- Case review

Machine Output Audits

OSLD: Optically Stimulated Luminescent Dosimetry

Al₂O₃ nanoDots (reusable)

Used for photon and electron output checks

TLD: Thermoluminescent Dosimetry

LiF-100 powder in capsules (single use)

Used for protons and unique photon machines (TomoTherapy, GammaKnife)

End-to-End Audits: Phantoms

- End-to-end tests
- Phantoms are made of tissue-equivalent plastics
- Contain TLD and film for point dose and planar dosimetry
- Institution is instructed to treat the phantom like you would a patient: simulation, planning, IGRT, and delivery

End-to-End Audits: Photon Phantoms

Comparison between institution's plan and delivered dose.

Phantom	H&N	Liver insert	Lung	Prostate	Spine
Irradiations	2900	257	2085	671	449
Pass	2559 <mark>(88%</mark>)	182 <mark>(71%)</mark>	1787 <mark>(86%)</mark>	570 <mark>(85%)</mark>	353 (79%)
Fail	341	75	298	101	96
Criteria	7%/4mm	7%/4mm	5%/5mm	7%/4mm	5%/3mm

End-to-End Audits: H&N Phantom

IMRT credentialing phantom

- H&N phantom
- 6 Point dose (TLD) measurements
- 2 Planar dose (radiochromic film)
- End-to-end test
 - Phantom treated like a patient
 - Imaging, Planning, Setup, Delivery
- Tests delivery in actual geometry
- Measures dose in target

On-Site Dosimetry Audits

IROC physicist brings independent dosimetry equipment to radiotherapy clinic to perform spot-checks of machine output and performance

Importance of Peer Review

- Peer review is very important in the context of new technologies in clinical trials
 - Proton therapy
 - MR-linacs
 - Ultra High Dose Rate Radiotherapy (FLASH)
- If our goal is <u>comparability</u> and <u>consistency</u>, peer review audits are a great way to verify that for new techniques

Image from https://www.pennmedicine.org/cancer/navigatingcancer-care/programs-and-centers/roberts-proton-therapy-center

Ultra-High Dose Rate Radiotherapy (FLASH): Very fast dose rate

- Delivers radiation at a rate orders of magnitude higher than conventional dose rates
- Defined as greater than 40 Gy/s
- Proton and electron FLASH beams are most common

https://intraop.com/mobetron-iort/

Ultra-High Dose Rate Radiotherapy (FLASH): Less Radiation Toxicity

- FLASH has the potential to reduce dose to healthy tissue
- The fast dose delivery is what creates this effect

1. Ashraf MR, Rahman M, Zhang R, et al. Dosimetry for FLASH Radiotherapy: A Review of Tools and the Role of Radioluminescence and Cherenkov Emission. *Front Phys.* 2020;8. doi:10.3389/fphy.2020.00328

IROC's future: moving into FLASH

- This effect can be seen and is already being implemented
- Varian Flash Forward Consortium
- Clinical Trials: FAST-01 (bone metastasis) and FAST-02 (thoracic bone metastasis)
- IROC needs to exist in this new space

1. Vozenin MC, De Fornel P, Petersson K, et al. The Advantage of FLASH Radiotherapy Confirmed in Mini-pig and Catcancer Patients. *Clin Cancer Res.* 2019;25(1):35-42. doi:10.1158/1078-0432.CCR-17-3375

Challenges with FLASH

- Dose is delivered so fast that commonplace instruments encounter issues, e.g. ion chamber recombination
- Dose rate independent dosimeters need to be used
- Dose rate monitoring needed
- IROC has been using dose rate independent dosimeters for decades

https://www.flukebiomedical.com/products/radiationmeasurement/phantoms-test-tools/farmer-type-ionizationchamber

IROC[™] IMAGING AND RADIATION ONCOLOGY CORE

Luminescence at IROC

OSLD: Optically Stimulated Luminescent Dosimetry

Al₂O₃ nanoDots (reusable)

Used for photon and electron output checks

TLD: Thermoluminescent Dosimetry

LiF-100 powder in capsules (single use)

Used for protons and unique photon machines (TomoTherapy, GammaKnife)

Luminescence and dose rate independence

- IROC has been using dose rate independent dosimeters for decades
- Passive Detectors that store signal after exposure to irradiation
- Ideal for IROC which mails Luminescence Dosimeters

1. Ashraf MR, Rahman M, Zhang R, et al. Dosimetry for FLASH Radiotherapy: A Review of Tools and the Role of Radioluminescence and Cherenkov Emission. *Front Phys.* 2020;8. doi:10.3389/fphy.2020.00328

Time information: capturing this information

- Passive Luminescence dosimeters integrate dose
- Time information is needed to get dose rate
- Detectors with very high timing resolution are needed
- Clinics will need a way to record this information to send back to IROC

https://www.rpdinc.com/ptw-60023-microsilicon-dosimetry-diode-9353.html

Integration into IROC FLASH phantoms

- Integrating dosimeters and timing instrument tools into a new anthropomorphic phantom
- Different phantoms need to be made for each treatment site

prostate phantoms

H&N phantoms Spine phantoms

lung phantoms

liver inserts

SRS phantoms

Future directions

- Passive detectors being tested
- Dose rate tools being developed
- Phantom design and testing in progress
- IROC FLASH phantom coming to a clinic near you

Thank You! Contributors: Dr. Paige Taylor, Dr. Stephen Kry, Dr. Emil Schueler, and Paola Alvarez

Hayden Scott, MS CIRMS Presentation

Making Cancer History®

