

The impact of spatial and temporal dose distributions on achieving the FLASH effect for scanning proton beams

Yannick Poirier

University of Maryland, Baltimore MD, USA

Monday, April 29, 2024

Council of Ionizing Radiation Measurement Standards

FLASH in a Nutshell

- The promise of FLASH: **All** the benefits of RT, **without** the drawbacks
	- Maintain tumoricidal effect, spare normal tissue
	- Oxygenation depletion and induced immune response

- The two ingredients of FLASH: **Dose** and **Ultra-High Dose rate** (UHDR)
	- Flash effect observed at ≥**10–15 Gy doses** and ≥**40Gy/s average dose rate**
	- ~5% effect <10 Gy, >30% effect >25 Gy (Bohlen et al 2022,
	- Conventional treatment: 1.8–2Gy, 0.1Gy/s (photons) to 1 Gy/s (protons)

Challenges in defining average dose rate

- FLASH sources come in two forms **scattered** and **scanned**
	- Scattered sources include electron, photon FLASH, & passively scattered protons
	- Can be either pulsed or continuous
- Dose rate for scattered sources simple to define: Total dose/total time
	- Scanned sources may be more complex

Conceptual difficulties in FLASH Radiotherapy

- Current technology Proton or Electron has following traits:
	- Mono-energetic, single field treatment
	- Large, single dose
		- Both due to technical limitations, and preclinical evidence
	- No modulation/tissue sparing/inverse planning etc…
	- Step back into the past
- Protons offer better penumbra, but no range sparing
	- Depth limited <20 cm to avoid Bragg Peak in patient
	- $-$ FAST-01 treating extremity mets, FAST-02 expands to chest, 8Gy \times 1
- **Severely limits** clinical sites that can currently be treated

Translating FLASH to the clinic – Which plan would you treat?

Proposed Bragg Peak Plan

Proton FLASH system

- Varian ProBeam system with isochronous (near continuous) scanning beam used in FAST-01 & FAST-02 trials
- **High** beam current (100-215 nA, vs 2 nA used clinically)
- **High energy** (250 MeV) -> lower energies achieved with beam degraders that reduce dose rate

Beam

Beam

M-RF

- **Small scanning area** reduced time between "passes" of the proton beam, faster delivery
- **Single energy** scanning multiple energies introduces unacceptable delay in dose delivery
	- Can either use **Transmission FLASH** or **ridge filters**
	- FAST-01 & FAST-02 clinical trials & most pre-clinical studies use transmission plateau

Defining Average Dose rate in Proton FLASH

- Defining **average dose rate** in proton FLASH challenging **nonsimultaneous** irradiation
	- $-$ Proton spot has Gaussian shape with σ=~4 mm, negligible dose > ~10 mm
- Average dose rate depends on **how fast** spot can travel across a point of interest
- Following the **Folkerts formalism** (developped by Varian for FAST-01), use time to deliver the **majority of the dose** (excluding first/last 10 cGy)

Open questions

- Dose rate geometry-dependent
- Proton spot **widens** and **flattens** as it enters the patient
	- Instantaneous dose rate must decrease what of the average dose rate?
	- Is there more to the time structure of the dose delivery?

5

10

15

Dose (Gy)

20

25

30

Spot size as function of depth

1 11 -21 31 35 -36.6 -37

Depth (cm)

Anatomy of a proton FLASH delivery

- Average dose rate largely independent of dose or spot spacing
- Dose rate is highly dependent on threshold used when "clock" starts
	- We use 1% due to noise in the scintillator

Measuring spaciotemporal proton dose using plastic scintillators

- Medscint Hyperscint RP-100 with 400 Hz acquisition
- Allows direct measurement of time distribution vs machine logfiles
- Well-characterized in electron FLASH

0 400 800 1200 1600 2000

Ion chamber radiation dose (cGy)

0

400

800

1200

Scintillator dose (cGy)

1600

2000

- Real-time signal, water equivalence, small (1×1) mm³) volume, able to resolve individual spots.
- Linear with time, dose, quenching beyond >34 cm

0

200

400

Measured delivery time (ms)

Measured delivery time (ms)

600

800

1000

Scintillator results – dose vs time

Scintillator results – dose rate vs time

Scintillator results – dose rate vs time

Scintillator results – dose rate vs depth

- Average Dose Rate:
	- Maximal at entrance and Bragg Peak
- Instantaneous dose rate:
	- Decreases consistently with depth
	- Minimal just before Bragg Peak (where OARs may be)
- Implications on clinicallyrealistic plans
	- Transmission plans: FLASH sparing concentrated on entrance
	- Bragg Peak plans: Longer delivery time, lower IDR may compromise effect

Average Dose Rate as function of Depth

Open questions and further discussions

- Is there an instantaneous dose rate per "column" to trigger FLASH?
- Is there a threshold amount of radiation?
- Is there a maximum time between "columns" below which FLASH is lost?
- Do low-dose "columns" "spoil" the FLASH effect by lowering the average dose rate?
- **All these questions have biological answers that have yet to be studied**

Conclusions

- **Realistic** candidate plans for FLASH curative treatment of deepseated tumors utilizes the **Bragg peak**
	- However, evidence from pre-clinical studies and clinical trials comes from **electrons** and **transmission protons**
	- Compared to Bragg Peak delivery, these have **higher instantaneous dose rate**
- Near the Bragg Peak, Dose & Instantaneous Dose **decreases**
	- Transmission FLASH used in extremity metastatic clinical trial
	- However, limited use for deep-seated tumors
	- Plateau region nearest bragg peak (where normal tissue is) has **worst** dose rate
- Average dose rate is still **poorly defined**
	- Highly dependent on threshold value used, with no clear biological justification
- **Future pre-clinical studies** should focus on studying the FLASH effect near the Bragg Peak & the impact of delivery time characteristics

I would like to acknowledge my collaborators:

Sina Mossahebi, Andrew Gerry, and Amit Sawant

I would like to thank my collaborators *Sina Mossahebi, Kevin Byrne, Kai Jiang, and Amit Sawant*