

# The impact of spatial and temporal dose distributions on achieving the FLASH effect for scanning proton beams

**Yannick Poirier** 

University of Maryland, Baltimore MD, USA

Monday, April 29, 2024

**Council of Ionizing Radiation Measurement Standards** 

# FLASH in a Nutshell

- The promise of FLASH: **All** the benefits of RT, **without** the drawbacks
  - Maintain tumoricidal effect, spare normal tissue
  - Oxygenation depletion and induced immune response



- The two ingredients of FLASH: Dose and Ultra-High Dose rate (UHDR)
  - Flash effect observed at ≥10–15 Gy doses and ≥40Gy/s average dose rate
  - ~5% effect <10 Gy, >30% effect >25 Gy (Bohlen et al 2022,
  - Conventional treatment: 1.8–2Gy, 0.1Gy/s (photons) to 1 Gy/s (protons)

#### Challenges in defining average dose rate

- FLASH sources come in two forms scattered and scanned
  - Scattered sources include electron, photon FLASH, & passively scattered protons
  - Can be either pulsed or continuous
- Dose rate for scattered sources simple to define: Total dose/total time
  - Scanned sources may be more complex









#### Conceptual difficulties in FLASH Radiotherapy

- Current technology Proton or Electron has following traits:
  - Mono-energetic, single field treatment
  - Large, single dose
    - Both due to technical limitations, and preclinical evidence
  - No modulation/tissue sparing/inverse planning etc...
  - Step back into the past
- Protons offer better penumbra, but no range sparing
  - Depth limited <20 cm to avoid Bragg Peak in patient</li>
  - FAST-01 treating extremity mets, FAST-02 expands to chest, 8Gy × 1
- Severely limits clinical sites that can currently be treated

#### Translating FLASH to the clinic – Which plan would you treat?



Proposed Bragg Peak Plan



#### Wei et al., Cancers 2021, 13, 5790

# Proton FLASH system

- Varian ProBeam system with isochronous (near continuous) scanning beam used in FAST-01 & FAST-02 trials
- High beam current (100-215 nA, vs 2 nA used clinically)
- High energy (250 MeV) -> lower energies achieved with beam degraders that reduce dose rate

Beam

M-RF

Beam

- Small scanning area reduced time between "passes" of the proton beam, faster delivery
- Single energy scanning multiple energies introduces unacceptable delay in dose delivery
  - Can either use Transmission FLASH or ridge filters
  - FAST-01 & FAST-02 clinical trials & most pre-clinical studies use transmission plateau



#### Defining Average Dose rate in Proton FLASH

- Defining average dose rate in proton FLASH challenging nonsimultaneous irradiation
  - Proton spot has Gaussian shape with  $\sigma = 4$  mm, negligible dose > ~10 mm
- Average dose rate depends on how fast spot can travel across a point of interest
- Following the Folkerts formalism (developped by Varian for FAST-01), use time to deliver the majority of the dose (excluding first/last 10 cGy)



#### **Open questions**

Spot size as function of depth

Depth (cm)

-11

21 31

—35 —36.6

-37

30

25

20

15

10

5

Dose (Gy)

- Dose rate geometry-dependent
- Proton spot widens and flattens as it enters the patient
  - Instantaneous dose rate must decrease what of the average dose rate?
  - Is there more to the time structure of the dose delivery?



# Anatomy of a proton FLASH delivery

- Average dose rate largely independent of dose or spot spacing
- Dose rate is highly dependent on threshold used when "clock" starts
  - We use 1% due to noise in the scintillator





# Measuring spaciotemporal proton dose using plastic scintillators

- Medscint Hyperscint RP-100 with 400 Hz acquisition
- Allows direct measurement of time distribution vs machine logfiles
- Well-characterized in electron FLASH

1200

Ion chamber radiation dose (cGy)

1600

2000

2000

Scintillator dose (cGy) 008 1000 008 (cGy)

0

0

- Real-time signal, water equivalence, small (1×1 mm<sup>3</sup>) volume, able to resolve individual spots.
- Linear with time, dose, quenching beyond >34 cm •



#### Scintillator results – dose vs time



#### Scintillator results – dose rate vs time



#### Scintillator results – dose rate vs time



#### Scintillator results – dose rate vs depth

- Average Dose Rate:
  - Maximal at entrance and Bragg Peak
- Instantaneous dose rate:
  - Decreases consistently with depth
  - Minimal just before Bragg Peak (where OARs may be)
- Implications on clinicallyrealistic plans
  - Transmission plans: FLASH sparing concentrated on entrance
  - Bragg Peak plans: Longer delivery time, lower IDR may compromise effect

Average Dose Rate as function of Depth



#### Open questions and further discussions

- Is there an instantaneous dose rate per "column" to trigger FLASH?
- Is there a threshold amount of radiation?
- Is there a maximum time between "columns" below which FLASH is lost?
- Do low-dose "columns" "spoil" the FLASH effect by lowering the average dose rate?
- All these questions have biological answers that have yet to be studied



#### Conclusions

- **Realistic** candidate plans for FLASH curative treatment of deepseated tumors utilizes the **Bragg peak** 
  - However, evidence from pre-clinical studies and clinical trials comes from electrons and transmission protons
  - Compared to Bragg Peak delivery, these have higher instantaneous dose rate
- Near the Bragg Peak, Dose & Instantaneous Dose decreases
  - Transmission FLASH used in extremity metastatic clinical trial
  - However, limited use for deep-seated tumors
  - Plateau region nearest bragg peak (where normal tissue is) has worst dose rate
- Average dose rate is still **poorly defined** 
  - Highly dependent on threshold value used, with no clear biological justification
- Future pre-clinical studies should focus on studying the FLASH effect <u>near</u> the Bragg Peak & the impact of <u>delivery time characteristics</u>



I would like to acknowledge my collaborators:

Sina Mossahebi, Andrew Gerry, and Amit Sawant



# I would like to thank my collaborators Sina Mossahebi, Kevin Byrne, Kai Jiang, and Amit Sawant