Suitability of noble gas-filled ionization chambers for dosimetry of electron FLASH radiotherapy

by

Ahtesham (Ash) Khan, Keith Kunugi, Larry DeWerd

Department of Radiation Oncology Northwestern Memorial Hospital Northwestern University Feinberg School of Medicine

Department of Medical Physics School of Medicine and Public Health University of Wisconsin-Madison

Suitability of noble gas-filled ionization chambers for dosimetry of electron FLASH radiotherapy Northwestern University & University of Wisconsin-Madison

Outline

- Introduction to Ultra-high dose rate (or FLASH) radiotherapy
- Dosimetry challenges in electron FLASH (eFLASH)
- Ultra thin parallel plate ion chambers
- Noble gas-filled parallel-plate ionization chambers
	- Recombination model
	- Relevant parameters
	- Collection efficiency results
- **Conclusions**

Pre-clinical evidence for the FLASH effect

▪ Ultra-high dose rate (or FLASH) radiotherapy widens the therapeutic index by preserving normal tissue for the same tumor control

TABLE 1 | Summary of preclinical and clinical evidence.

FLASH-RT, FLASH radiotherapy; CONV-RT, conventional dose-rate radiotherapy; *Effects of FLASH-RT compared with CONV-RT.

Lin et al. - Frontiers in Oncology - 2021

Ash Khan (akhan49@wisc.edu)

3

To

CIRMS talk

Benefits of FLASH radiotherapy

- Lower side effects and complications
- Possible new treatments that were previously limited by radiosensitive organs

References: Ashraf et al. - Frontiers in Physics - 2020

Ash Khan (akhan49@wisc.edu)

Suitability of noble gas-filled ionization chambers for dosimetry of electron FLASH radiotherapy Northwestern University & University of Wisconsin-Madison

Beam pulse structure

- Radiobiological reasonings behind the FLASH effect are still under investigation
- Physical parameters play a key role in inducing the FLASH effect
	- **•** Time-averaged dose rate $(>40 \text{ Gy/s})$
	- Cumulative dose

Linac

Electron/photon therapy

Synchrocyclotron (FLASH dose rate)

Isochronous cyclotron (quasi-continuous radiation) (f=72.8 MHz, 2nd Harmonic) 2_{ns}

Proton therapy

Modified from Diffenderfer et al. - Medical Physics - 2021

Electron FLASH (eFLASH)

- Mobetron intra-operative linac capable of delivering electron beams with FLASH dose rates
	- \blacksquare Pulse widths of 0.5-4 μ s
	- Pulse repetition frequency of 5-120 Hz
	- Dose per pulse of up to 10 Gy
	- Instantaneous dose rates of up to $2 \times 10^7 Gy/s$

6

References: Dai et al. - Medical Physics - 2024

Significant recombination effects in eFLASH

▪ Charge collection efficiency is inversely proportional to dose-per-pulse and directly proportional to pulse width

References:

Liu et al. – Medical Physics - 2024

Ultra thin parallel-plate ion chambers

- Smaller plate separations lead to higher charge collection efficiency (CCE)
	- Higher electric field strengths inside the air cavity despite utilizing voltages in the 100-300 V range
	- Different charge carriers experience each other for a shorter amount of time for smaller electrode separation
	- Electrons travel shorter distances inside the air cavity before reaching the anode

References: Modified from Gómez et al. - Medical Physics - 2022

Ash Khan (akhan49@wisc.edu)

Alternative solutions

- Need for a dosimeter with a large dynamic range
	- Relevant for hypofractionated treatments with one or a few pulses
- Adaptable to other ion chamber geometries such as cylindrical ion chambers

Reasons for high recombination

- Recombination due to
	- Cation-electron recombination
	- Electron attachment to atoms with high electron affinity
	- Ion-ion recombination

Usage of noble gas eliminates anions

- Recombination due to
	- Cation-electron recombination
	- **Electron attachment to atoms with high electron affinity**
	- Ion-ion recombination

References:

Di Martino et al. - Physica Medica - 2022

ALLS Chamber

- Operates at 0.1 kPa
	- **•** Possible limitations imposed by low signal $\langle 0.5 \text{ nC} \text{ for } 20 \text{ Gy } DPP \rangle$
- The impact of the perturbation of the electric field on the charge collection efficiency was not investigated

Di Martino et al. - Physica Medica - 2022

Innovation

- Create a 1D charge collection efficiency (CCE) model to explore the suitability of noble gas-filled ionization chambers without operating at low pressures
	- Helium, neon, and argon

Recombination model

▪ Previously proposed by Gotz et al. for parallel-plate ionization chambers

Assumptions:

- Uniform electric field along the lateral axes
- Drift only considered along the direction of the electric field (1D case)
- Homogeneous dose distribution inside the air cavity
- Pulse separation >> Pulse duration
- Charge multiplication effects are not modeled

Suitability of noble gas-filled ionization chambers for dosimetry of electron FLASH radiotherapy Northwestern University & University of Wisconsin-Madison

Recombination model

Task: solve for collected n_e and n_+

Recombination model

■ Local electric field changes:

$$
\frac{\partial E(x,t)}{\partial x} = \frac{e}{\epsilon} [n_+(x,t) - n_e(x,t)]
$$

$$
\int E(x,t)dx = V
$$

■ Generated electron/positive ion pairs:

$$
I(x,t) = \frac{DPP \times \rho}{t_{pulse}e\left(\frac{W}{e}\right)}
$$

■ Collected free electrons:

$$
n_e^{collected} = \frac{\partial}{\partial x} [v_e(E) n_e(x=0, t)]
$$

References:

Gotz et al. - Physics in Medicine & Biology – 2017 Gómez et al. - Medical Physics – 2022

Ash Khan (akhan49@wisc.edu)

Numerical methods

$$
\frac{dy}{dt}=f(t,y),\quad y(t_0)=y_0.
$$

Now we pick a step-size $h > 0$ and define:

$$
\begin{aligned} y_{n+1} &= y_n + \frac{1}{6}\left(k_1 + 2 k_2 + 2 k_3 + k_4\right)h, \\ t_{n+1} &= t_n + h \end{aligned}
$$

for $n = 0, 1, 2, 3, ...$, using^[3]

$$
\begin{aligned} k_1 &= \; f(t_n,y_n), \\ k_2 &= \; f\!\left(t_n + \frac{h}{2}, y_n + h\frac{k_1}{2}\right), \\ k_3 &= \; f\!\left(t_n + \frac{h}{2}, y_n + h\frac{k_2}{2}\right), \\ k_4 &= \; f(t_n + h, y_n + hk_3) \,. \end{aligned}
$$

References:

Press – Computers in Physics - 1992

■ The 4th order Runge-Kutta method: ■ Adaptive step size to reduce computational time (to within 1 hour)

$$
h_{\text{new}} = 0.9 \cdot h \cdot \left(\frac{\epsilon}{TE}\right)^{1/5}
$$

Input parameters

- **•** Drift velocity, ion mobility, and recombination coefficients extracted from literature
	- Electron-ion recombination coefficients:
		- Helium: $1.7 \times 10^{-14} m^3/s$
		- Neon: $2.03 \times 10^{-14} m^3/s$
		- Argon: $3.0 \times 10^{-14} m^3/s$
	- Ion mobility:
		- Helium: $0.01 \, m^2 V^{-1} s^{-1}$
		- Neon: 0.004 $m^2V^{-1}s^{-1}$
		- Argon: $0.002 \ m^2 V^{-1} s^{-1}$

References:

Biondi & Brown - Physical Review – 1949 Oskam & Mittelstadt - Physical Review – 1963 Peisert & Sauli – CERN - 1984

Ash Khan (akhan49@wisc.edu)

Recombination model

- Charge collection efficiency for
	- Bias voltages of 150 V and 300 V
	- Plate separation of 1 mm
	- \blacksquare Pulse duration of 0.5 μ s
	- Dose-per-pulse of 1-20 Gy
	- Instantaneous dose rates of $2 \times 10^6 4 \times 10^7$ Gy/s

Suitability of noble gas-filled ionization chambers for dosimetry of electron FLASH radiotherapy Northwestern University & University of Wisconsin-Madison

Main results

- **EXECUTE:** Argon suffers from low CCE due to high electron-ion recombination and low ion mobility effects
- \blacksquare For 300 V, CCE > 0.99 for helium

Limitations

- Need to investigate the magnitude of helium leakage from the sealed chamber
- Availability of helium

Conclusions

- **EX** Helium-filled ionization chambers with 1 mm plate separation are suitable for dose rates of up to 4×10^7 Gy/s with 300 V bias voltage
- Experimental results are needed to validate the suitability of noble gas-filled ion chambers for dosimetry of eFLASH

Acknowledgments

PI: ▪ **Larry DeWerd**

The UWADCL customers whose continued patronage supports ongoing research at the UWMRRC

Ash Khan (akhan49@wisc.edu)

CIRMS talk