Suitability of noble gas-filled ionization chambers for dosimetry of electron FLASH radiotherapy

by

Ahtesham (Ash) Khan, Keith Kunugi, Larry DeWerd

Department of Radiation Oncology Northwestern Memorial Hospital Northwestern University Feinberg School of Medicine Department of Medical Physics School of Medicine and Public Health University of Wisconsin-Madison

Outline

- Introduction to Ultra-high dose rate (or FLASH) radiotherapy
- Dosimetry challenges in electron FLASH (eFLASH)
- Ultra thin parallel plate ion chambers
- Noble gas-filled parallel-plate ionization chambers
 - Recombination model
 - Relevant parameters
 - Collection efficiency results
- Conclusions

Pre-clinical evidence for the FLASH effect

 Ultra-high dose rate (or FLASH) radiotherapy widens the therapeutic index by preserving normal tissue for the same tumor control

 TABLE 1 | Summary of preclinical and clinical evidence.

System	Author	Year	Irradiation		Modality	models		Endpoint(s)	Main findings*	
			FLASH-RT	CONV-RT	ofradiation	Tumor	Normal tissue		Tumor	Normal tissue
Brain	Montay-Gruel P (26)	2020	12.5×103 -5.6×106 Gy/s	0.1Gy/s	electron	mice (glioblastoma)	_	tumor growth;cognitive function	similar antitumor effect	protective effect
	Montay-Gruel P (23)	2019	>100 Gy/s	0.07-0.1 Gy/s	electron	-	mice	cognitive function;ROS, neuronal structure, synaptic protein, neuroinflammation	_	fully preserved
	Simmons DA (24)	2019	200, 300Gy/ s	0.13 Gy/s	electron	-	mice	cognitive function, neurodegeneration, neuroinflammation	-	protective effect
	Montay-Gruel P (21)	2018	37 Gy/s	0.05 Gy/s	X-ray	-	mice	cognitive function, Cell proliferation, GFAP	-	protective effect
	Montay-Gruel P (20)	2016	0.1,1, 3, 10, 3 s, 5.6	30, 100,500 Gy/ 5 MGy/s	electron	-	mice	cognitive function	-	protective effect above 30 Gy/s, fully preserved above 100 Gy/s
Intestine	Venkatesulu BP (28)	2019	35Gy/s	0.1 Gy/s	electron	-	mice	toxicity, survival	-	No protection effect
	Billy W. Loo (9)	2017	210 Gy/s	0.05 Gy/s	electron	-	mice	survival	-	protective effect
Lung	Fouillade C (29)	2020	40-60GY/S	?	electron	-	mice	cell proliferation, DNA damage, inflammatory genes		protective effect
	Buonanno M (22)	2018	0.025 Gy/s	s - 1500 Gy/s	proton	-	human lung fibroblasts	cell survival, b-gal, TGFb		protective effect
	Favaudona V (30)	2015	>40 Gy/s,	< 0.03Gy/s	electron	mice(lung tumor)	mice	tumor growth, apoptosis, lung fibrosis	similar antitumor effect	protective effect
	Favaudon V (19)	2014	≥40 Gy/s	< 0.03Gy/s	electron	mice(lung tumor)	mice	tumor growth, early and late complications	similar antitumor effect	protective effect
Skin	Bourhis J (10)	2019	166.7Gy/s	-	electron	patient (lymphoma)	-	tumor response; Soft tissue toxicity	complete response	grade 1 epithelitis, grade 1 oedema
	Vozenin MC (27)	2018	300 Gy/s	0.083 Gy/s	electron	cat (squamous carcinoma	pig	skin toxicity, PFS	PFS at 16 months was 84%	protective effect
Blood	Chabi S (25)	2020	200Gy/S	<0.072 Gy/S	electron	mice (leukemia)	mice	tumor growth, normal hematopoiesis	similar antitumor effect	protective effect
Other	Adrian G (31)	2020	600 Gy/s	0.233 Gy/s	electron	prostate cancer cells	-	survival	flash effect depends on oxygen concentration	
	Beyreuther E (32)	2019	100 Gy/s	0.083 Gy/s	proton	-	zebrafish embryo	survival	-	Similar toxicity except for pericardial edema at one dose point(23Gv)

FLASH-RT, FLASH radiotherapy; CONV-RT, conventional dose-rate radiotherapy; *Effects of FLASH-RT compared with CONV-RT.

Lin et al. - Frontiers in Oncology - 2021

Ash Khan (akhan49@wisc.edu)

3

CIRMS talk

Benefits of FLASH radiotherapy

- Lower side effects and complications
- Possible new treatments that were previously limited by radiosensitive organs

Ashraf et al. - Frontiers in Physics - 2020

Ash Khan (akhan49@wisc.edu)

Suitability of noble gas-filled ionization chambers for dosimetry of electron FLASH radiotherapy Northwestern University & University of Wisconsin-Madison

Beam pulse structure

- Radiobiological reasonings behind the FLASH effect are still under investigation
- Physical parameters play a key role in inducing the FLASH effect
 - Time-averaged dose rate (>40 Gy/s)
 - Cumulative dose

Electron/photon therapy

Synchrocyclotron (FLASH dose rate)

Isochronous cycl	otron (quasi-	-continuous i	adiation)	
(f= 72.8	MHz, 2 nd Harn	nonic)		
2 ns				

Proton therapy

References:

Modified from Diffenderfer et al. - Medical Physics - 2021

Electron FLASH (eFLASH)

- Mobetron intra-operative linac capable of delivering electron beams with FLASH dose rates
 - Pulse widths of $0.5-4 \ \mu s$
 - Pulse repetition frequency of 5-120 Hz
 - Dose per pulse of up to 10 Gy
 - Instantaneous dose rates of up to $2 \times 10^7 Gy/s$

References: Dai et al. - Medical Physics - 2024

Significant recombination effects in eFLASH

• Charge collection efficiency is inversely proportional to dose-per-pulse and directly proportional to pulse width

References:

Liu et al. – Medical Physics - 2024

Ash Khan (akhan49@wisc.edu)

Ultra thin parallel-plate ion chambers

- Smaller plate separations lead to higher charge collection efficiency (CCE)
 - Higher electric field strengths inside the air cavity despite utilizing voltages in the 100-300 V range
 - Different charge carriers experience each other for a shorter amount of time for smaller electrode separation
 - Electrons travel shorter distances inside the air cavity before reaching the anode

References: Modified from Gómez et al. - Medical Physics - 2022

Ash Khan (akhan49@wisc.edu)

Alternative solutions

- Need for a dosimeter with a large dynamic range
 - Relevant for hypofractionated treatments with one or a few pulses
- Adaptable to other ion chamber geometries such as cylindrical ion chambers

Reasons for high recombination

- Recombination due to
 - Cation-electron recombination
 - Electron attachment to atoms with high electron affinity
 - Ion-ion recombination

References: Modified from Rossomme et al. - Medical Physics - 2016

Usage of noble gas eliminates anions

- Recombination due to
 - Cation-electron recombination
 - Electron attachment to atoms with high electron affinity
 - Ion-ion recombination

References:

Di Martino et al. - Physica Medica - 2022

ALLS Chamber

• Operates at 0.1 kPa

Table 1

- Possible limitations imposed by low signal (<0.5 nC for 20 Gy DPP)
- The impact of the perturbation of the electric field on the charge collection efficiency was not investigated

ALLS operating par	ameters.	
	Parameters	Value
Beam	Pulse duration T	4 μs
	Dose per pulse D_p	40 Gy
ALLS Chamber	Electrodes distance d	1 mm
	Argon Density $\rho_0 @ NTP$	1.66 kg m^{-3}
	Pressure	1 hPa
	Voltage	200 V
	Argon average energy w_e	26 eV
	Argon mobility μ_0 @ NTP	$1.6 \cdot 10^{-4} \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$
	Argon dielectric constant $\varepsilon_0 \varepsilon_r$	8.85 $\cdot 10^{-12}$ C V ⁻¹ m ⁻¹

Di Martino et al. - Physica Medica - 2022

Innovation

- Create a 1D charge collection efficiency (CCE) model to explore the suitability of noble gas-filled ionization chambers without operating at low pressures
 - Helium, neon, and argon

Recombination model

Previously proposed by Gotz et al. for parallel-plate ionization chambers

Assumptions:

- Uniform electric field along the lateral axes
- Drift only considered along the direction of the electric field (1D case)
- Homogeneous dose distribution inside the air cavity
- Pulse separation >> Pulse duration
- Charge multiplication effects are not modeled

Suitability of noble gas-filled ionization chambers for dosimetry of electron FLASH radiotherapy Northwestern University & University of Wisconsin-Madison

Recombination model

• Task: solve for collected n_e and n_+

Gotz et al. - Physics in Medicine & Biology – 2017 Gómez et al. - Medical Physics – 2022

Recombination model

• Local electric field changes:

$$\frac{\partial E(x,t)}{\partial x} = \frac{e}{\epsilon} [n_+(x,t) - n_e(x,t)]$$
$$\int E(x,t) dx = V$$

• Generated electron/positive ion pairs:

$$I(x,t) = \frac{DPP \times \rho}{t_{pulse}e\left(\frac{W}{e}\right)}$$

• Collected free electrons:

$$n_e^{collected} = \frac{\partial}{\partial x} [\nu_e(E)n_e(x=0,t)]$$

References:

Gotz et al. - Physics in Medicine & Biology – 2017 Gómez et al. - Medical Physics – 2022

Ash Khan (akhan49@wisc.edu)

Numerical methods

• The 4th order Runge-Kutta method:

$$rac{dy}{dt}=f(t,y), \quad y(t_0)=y_0.$$

Now we pick a step-size h > 0 and define:

$$egin{aligned} y_{n+1} &= y_n + rac{1}{6} \left(k_1 + 2k_2 + 2k_3 + k_4
ight) h, \ t_{n+1} &= t_n + h \end{aligned}$$

for $n = 0, 1, 2, 3, ..., using^{[3]}$

$$egin{aligned} k_1 &= \ f(t_n, y_n), \ k_2 &= \ figg(t_n + rac{h}{2}, y_n + hrac{k_1}{2}igg), \ k_3 &= \ figg(t_n + rac{h}{2}, y_n + hrac{k_2}{2}igg), \ k_4 &= \ f(t_n + h, y_n + hk_3)\,. \end{aligned}$$

Adaptive step size to reduce computational time (to within 1 hour)

$$h_{
m new} = 0.9 \cdot h \cdot \left(rac{\epsilon}{TE}
ight)^{1/5}$$

References:

Press – Computers in Physics - 1992

Input parameters

- Drift velocity, ion mobility, and recombination coefficients extracted from literature
 - Electron-ion recombination coefficients:
 - Helium: $1.7 \times 10^{-14} m^3/s$
 - Neon: $2.03 \times 10^{-14} m^3/s$
 - Argon: $3.0 \times 10^{-14} m^3/s$
 - Ion mobility:
 - Helium: $0.01 m^2 V^{-1} s^{-1}$
 - Neon: $0.004 \ m^2 V^{-1} s^{-1}$
 - Argon: $0.002 m^2 V^{-1} s^{-1}$

References:

Biondi & Brown - Physical Review – 1949 Oskam & Mittelstadt - Physical Review – 1963 Peisert & Sauli – CERN - 1984

Ash Khan (akhan49@wisc.edu)

Recombination model

- Charge collection efficiency for
 - Bias voltages of 150 V and 300 V
 - Plate separation of 1 mm
 - Pulse duration of 0.5 µs
 - Dose-per-pulse of 1-20 Gy
 - Instantaneous dose rates of $2 \times 10^6 4 \times 10^7 Gy/s$

Main results

- Argon suffers from low CCE due to high electron-ion recombination and low ion mobility effects
- For 300 V, CCE >0.99 for helium

Limitations

- Need to investigate the magnitude of helium leakage from the sealed chamber
- Availability of helium

Conclusions

- Helium-filled ionization chambers with 1 mm plate separation are suitable for dose rates of up to $4 \times 10^7 Gy/s$ with 300 V bias voltage
- Experimental results are needed to validate the suitability of noble gas-filled ion chambers for dosimetry of eFLASH

Acknowledgments

PI: • Larry DeWerd

The UWADCL customers whose continued patronage supports ongoing research at the UWMRRC

Ash Khan (akhan49@wisc.edu)