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RED2 Laboratory – Overview and Collaborations

• Spring 2024 Research Group

• 10 Ph.D. students in NRE and MP 

• 3 M.S. students

• 6 Undergraduate students

• 1 Post-doctoral Fellow 

• 1 Research Engineer

• 1 Visiting Professor
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Mission: The Radiological Engineering, Detection, and Dosimetry (RED²) Laboratory, led by Dr. Shaheen 

Dewji, conducts innovative, interdisciplinary research focusing on harnessing both computational capabilities in 

Monte Carlo radiation transport modeling and experimental measurements for applications in radiation detection, 

radiation protection and shielding, dosimetry, health physics, and nuclear materials accounting.

Computational 
Dosimetry and 

Shielding

Development of dose 
coefficients and 
shielding design 

using Monte Carlo 
radiation transport 

codes

Age/sex-specific 
anthropomorphic 

computational 
phantoms

Radionuclide 
biokinetic models for 
emergency response 
and nuclear medicine

Radiation 
Detection

Employment of 
validation and 

verification of gamma-
ray spectroscopic 

detector responses

Contaminated 
environmental media 

for environmental 
assessment and 

decommissioning

Field triage of uptake 
during nuclear, 

radiological, and 
fission product 
release events

Nuclear 
Nonproliferation 
and 3S (Safety, 

Security 
& Safeguards)

Nuclear materials 
control, accounting, 
and safeguards of 

SNM

Gamma-ray 
spectroscopic 

analysis for 
safeguards by design 
of of advanced non-

LWR reactors

Neutron multiplicity 
counting for field 

search/detection and 
criticality safety



RED2 Laboratory – Research Collaborations



Introduction: Pathways for Internal Exposure

Figure 1. In the case of a radiological event a wide range of population will be exposed to this radioactive cloud. Using

Computational Fluid and Particle Dynamic (CFPD) can address thesubject-specific limitations of internal dosimetry models.

on CT scans17–20 or morphometric data21,22. Following geometry establishment, selecting a suitable turbulence modeling

technique becomes crucial. Here, it is critical to accurately depict thecomplex flow phenomena—ranging from the laryngeal jet

to the relaminarization in the lower bronchi. In this regard, Reynolds-Averaged Navier-Stokes (RANS) has proven to be as

effectiveas Large-Eddy Simulation (LES) models14,23,24.

While significant advancements have been made, the current state-of-the-art lacks the ability to conduct an automated

end-to-end workflow in order to conduct large-scaleor individualized simulations. Consequently, each CFPD project in theHRT

necessitates expertise in simulation and geometric reconstruction interrupting the workflow with external intervention, posing a

barrier to entry for medical companies, governmental agencies, and other stakeholders who might otherwise benefit from these

advanced modeling tools. Furthermore, integrating acoupled CFPD-Monte Carlo radiation transport code is indispensable to

predict subject-specific dose deposition in the lungs and surrounding organs. While Taalat K. et al. developed aCFPD-MCNP

tool10 coupling radiation CFPD and radiation transport, this effort was limited to idealized reference geometries from ICRP. A

hybrid automation framework is therefore necessary to harness real anatomical geometries of HRT models from CT scans with

CFPD integrated with Monte-Carlo to represent population-specific physiological models for the estimation of deposition and

inhaled radiation dose. Such aworkflow harnesses multi-scale multiphysics tools to model the etiology of radiation-related

risk-response.

Furthermore, prior efforts employing CFPD have often emphasized the impact of uniform versus polydisperse aerosol

particles14,15,25 or explored alterations in HRT geometry related to disorders likesleep apnea24,26 and wall roughness27 in an

approximate way by manually changing their 3D HRT models. The present study further expands the mechanism by which

airflow and particle deposition vary with key HRT parameters such as trachea length, the angle between the trachea and the

main bronchi, and trachea diameter. This study sets the foundation for patient-specific studies for accurate airflow and particle

deposition profiles. Moreover, there is aneed for accurate internal radiation dosimetry for the exposed public that lies out of the

average population usually represented in dosimetric models1; therefore, this research provides insight into why this type of

tool is needed and why age and sex-specific models representativeof members of the exposed public are needed.

For internal dosimetry calculations, particle distribution profiles from CFPD simulations are coupled with the Particle

and Heavy Ion Transport code System (PHITS) Monte Carlo code28. A 3D phantom wasemployed from ICRP Publication

14529 mesh-type anthropmorphic phantoms of a reference adult male and female, improving upon the prior generation of

anthropomorphic phantom modeling utilizing voxel-based phantom1030. This synergistic computational approach enhances

dose deposition estimations for lungs and surrounding organs.

Overall, this research work undertakesa comprehensiveanalysis of airflow, particle deposition, and radiation dosimetry

across a largecohort of de-identified patients who haveundergone chest or head/neck CT scans and whose dataare publicly

available. An automated pipeline capable of extracting 3D geometries of the lower or upper respiratory tract from CT scans is

introduced. The pipeline also includes semi-automated post-processing to prepare the geometry for CFPD simulations and

can generate the input files for either open-source softwareOpenFOAM31 or licensed software StarCCM+ from Siemens32.

Additionally, a Python script that couples CFPD deposition profileswith the PHITS Monte-Carlo tool wasdeveloped. This
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• Breakthroughs driven by 
medicine in radiation sciences

• “Digital twins”

• “Personalized medicine”

• Computational capabilities have 
afforded vast improvements in 
radiation modeling

• Anatomical models 
(anthropomorphic phantoms)

Introduction: Evolutions in Radiation Dosimetry

Images courtesy of G Xu (2014), W. Bolch (UF)



• Computational capabilities have afforded vast 
improvements in [radiation/biological] 
modeling

• Greatest source of variability in dose assessment 
from internal emitters

• Physiologically-based models of radiation 
behavior can also employ advanced technologies

• Age

• Sex

• Non-reference 

• Height

• Weight

• Pregnancy

Introduction: Evolutions in Radiation Dosimetry



• Large and complex datasets available
• Mechanistic behavior of internalized radiation in the body can be 

conducted using multi-scale models

Overview: Evolutions Revolutions in Radiation Dosimetry

Multiphysics

Metabolomics

Proteomics Transcriptomics

Genomics

Epidemiology



Multiphysics Modeling of Physiological Behavior
STRONTIUM-90 ICRP VS COMPUTATIONAL FLUID AND PARTICLE DYNAMICS DEPOSITION 

MODELING
CFPD capabilities: Representative Sr-90 particle size distribution 
and subject-specific human respiratory tract based on CT scans 



Multiphysics Modeling of Physiological Behavior:
Computational Fluid Particle Dynamics Modeling of Deposition
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Multiphysics Modeling of Physiological Behavior: AI → CFPD
CT Segmentation - Convolutional Neural Network (CNN)



Multiphysics Modeling of Physiological Behavior: AI → CFPD
Morphological Techniques: CT Segmentation Upper HRT
Nasal cavity, automatic segmentation algorithm:
• Complex geometry
• Very challenging to capture all the sinus (in fact most of the manual 

segmentations by physicians does not consider some cavities)

Smooth+threshold

Unsharping

Binary operations



Supervised Learning: Random Forest Regressor
Trained on metrics of the respiratory tract → Extract the importance of features

Multiphysics Modeling of Physiological Behavior: AI →CFPD

Unsupervised Learning: Kernel k-means Clustering

k=5

Before clustering, using 

a function or “kernel” on 

the data, allows us to 

“linearize” non-linear 

patterns in data.

This algorithm 

makes K clusters by 

joining data points 

that are closest to 

each other.



Multiphysics Modeling of Physiological Behavior: AI →CFPD
Unsupervised Learning: Kernel k-means Clustering

• Our work show that for members of the public, the metrics best that describes each airway are 
Trachea Diameter and Bronchi Angle



Multiphysics Modeling of Physiological Behavior: AI →CFPD
Lagrangian Particle Tracking

Laminar (Nose) → Turbulent (Trachea) → Relaminarize

• Solutions to Navier Stokes
• k-omega Shear Stress Transport (SST) 

Langtry Menter 

• Numerical technique for simulated 
tracking of particle paths.

• Coupling:
• 2-way coupling considering the interaction 

between the continuous and particulate phase 
only by momentum exchange terms.

• 4-way coupling considering particle-particle 
collision; momentum exchanged between the 
fluid and particles; and turbulence energy 
exchange between the gas and particles

Stokes number vs void coefficient



Multiphysics Modeling of Physiological Behavior: AI →CFPD
Application - Fluid and Particle Dynamics in Respiratory Tract



Multiphysics Modeling of Physiological Behavior: AI →CFPD
STRONTIUM-90 ICRP VS COMPUTATIONAL FLUID AND PARTICLE DYNAMICS MODELING

CFPD capabilities: Representative Sr-90 particle size distribution and subject-
specific human respiratory tract based on CT scans HRTM for Sr-90 from ICRP 66/130

Ԧ𝑔

Ԧ𝑔

mDF=81.5%

nDF=40.9%

These inputs can then serve as a source 
distribution for a Monte-Carlo transport code. → 

Accurate spatial dose distribution

ICRP 1st order linear equation 

model of the HRTM + clearance 

to other organs



Multiphysics Modeling of Physiological Behavior: AI →CFPD
Results: Deposition Fractions vs ICRP 130
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Multiphysics Modeling of Physiological Behavior: CFPD → Monte Carlo
STRONTIUM-90 ICRP VS CFPD AND PHITS MONTE-CARLO SOFTWARE

Ԧ𝑔

These inputs can 
then serve as a 

source 
distribution for a 

Monte-Carlo 
transport code. 
→ Accurate 
spatial dose 
distribution



Multiphysics Modeling of Physiological Behavior: CFPD → Monte Carlo 
STRONTIUM-90 ICRP VS CFPD AND PHITS MONTE-CARLO SOFTWARE

Table: Dose per unit source to the most important organs 

surrounding the lungs in the human body, using a I-131 as 

the isotope for the point sources.



Biokinetic model:  Account 

for particle deposition, 

retention, and clearance 

Surrogate model: 

Physiologically-enhanced 

CFPD Model 

Physiologically-enhanced biokinetic model​

Multiphysics Modeling of Physiological Behavior: CFPD → Monte Carlo 
Next Steps for Population-Specific Integration
Integration and Summary



Multiphysics Modeling of Physiological Behavior: Monte Carlo → Biokinetics
PHITS SIMULATION OF RETENTION IN SOURCE ORGANS AND DETECTOR RESPONSES

Top to Bottom: Am-241, Cs-137, I-131



Takeaways

The use of machine-learning technologies has dramatically enhanced research 
capabilities. Standardization of techniques has also broadened these capabilities. 

By utilizing big datasets previously unattainable, researchers can now acquire deeper 
insights. 

One example of a good study case is the human respiratory tract, due to the 
abundance of publicly available data and studies. 

These techniques can improve mechanistic behavior of radiation in the body, 
complemented by radiation epidemiology, making these studies more representative. 
Additionally, the complexity of testing, improving, and reiterating designs, methods, 
and models has been significantly reduced.



RED2 Laboratory Team at GT

GT Graduate Research 
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• Jarred Jordan
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Questions!

Contact:

sdewji@tamu.edu

https://red2.engr.tamu.edu

@TAMURED2

Contact:

shaheen.dewji@gatech.edu

red2@me.gatech.edu  

https://sites.gatech.edu/dewji/  

@DewjiRED2

Follow us on LinkedIn! 

RED2 
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Results: Deposition Fractions

28

Region In-house 
Dep_Module

ICRP 130 RD% AD%

ET1 0.491 0.492 -0.345 -0.170

ET2 0.264 0.265 -0.377 -0.100

BB 0.018 0.018 -1.110 -0.020

bb 0.009 0.009 -2.537 -0.023

AI 0.049 0.045 10.250 0.460

Total 0.831 0.829 0.178 0.147

Table: Comparison of deposition values (relative difference (RD) and absolute difference (AD)) for 
polydisperse particle distribution (5 μm AMAD) for light exertion level (breathing rate = 1.5 m3 h-1) by an 

adult male 



Topic 1: Aim 2 - Computational Fluid Particle Dynamics modeling of 
Deposition

Automated 3D CT-based algorithm of real patients 
(EXACT '09 and TCIA databases) used to reconstruct 
realistic HRT geometry representative of population.
• Inclusion of the nasal cavity and the paranasal 

sinuses (omitted in prior non-radiation studies). 
• Significantly impact overall biodistribution of 

radionuclides body.

Sensitivity analysis will be conducted compared to 
ICRP’s 15 generation HRTM deterministic phantom 
model 
• Revised S-values, harnessing morphometric/ 

physiological data and particulate distribution 
(morphology, deposition velocity)  

• Benchmarked with animal tomogram data of 
deposition from aluminosilicate particles. 

Reduced-order discrete element model (DEM) of the 
CFPD modeling the complex physics in the airways 
(laminar to turbulent to irregular laminar) 
• Integrated into a Bayesian analysis of aerosol 

dynamics for improving HRT transfer coefficients 
(Aim 1, 3).



AI Convolutional Neural Network: Basic Operations

Self-attention
Provides a way to focus on different 

sections of data at a time

ReLU Activation Function 
(positive if convolved pixel above a certain 

threshold)

Batch Normalization

Regular Convolution

Concatenation

Dilated Convolution



Extracts the dimension or “Component” in the data with more linear variance. 

Essentially, it looks for the direction in which the data is most spread

AI →CFPD → Advanced Mathematics
Singular Value Decomposition: Principal Component Analysis



• Used to evaluate the most essential features in the dataset.

• The most used variable by the decision trees to divide the branches 
is the feature that best describes the dataset 

AI →CFPD → Advanced Mathematics → AI
Supervised Learning: Random Forest Regressor 



Finite Volume Method

• Used to model fluid dynamics numerically. 

• Preserve quantities such as energy and mass 
– Physically meaningful

• The exact method for average values – fewer 
approximations committed 

Turbulence Modeling:

Closure Equation: RANS – k-ω

• No analytical theory to predict turbulence – 
persists at all scales (macro/meso/micro).

• Model averages flow and treats fluctuations 
separately.

AI → CFPD
Finite Volume method - Reynold Average Navier-Stokes (RANS)

Average 
flow

Turbulent Kinetic 
Energy 

production

Thermal 
kinetic 
energy 

dissipation



Expanding Capabilities

• Generative Adversarial Networks (GAN’s) can model bone remodeling 
processes in orthopedics or dental applications. These models could 
predict bone growth or resorption patterns and assist in treatment 
planning for fractures, joint replacements, or dental implants.

• Convolutional Neural Networks (CNN’s) can analyze endoscopic images 
or other GI-related data to detect abnormalities, such as polyps, ulcers, or 
lesions. These models could help in early diagnosis and treatment 
planning for conditions like colorectal cancer or inflammatory bowel 
disease.

• Convolutional Neural Networks (CNN’s) could analyze medical images 
like MRIs or CT scans to detect and quantify abnormalities in blood 
vessels. This can aid in diagnosing conditions like aneurysms, vascular 
stenosis, or arteriovenous malformations.
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