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» Spring 2024 Research Group

* 10 Ph.D. students in NRE and MP
« 3 M.S. students

» 6 Undergraduate students

» 1 Post-doctoral Fellow

* 1 Research Engineer

1 Visiting Professor




Radiological Engineering, Detection, and Dosimetry

Mission: The Radiological Engineering, Detection, and Dosimetry (RED?) Laboratory, led by Dr. Shaheen

Dewsji, conducts innovative, interdisciplinary research focusing on harnessing both computational capabilities in
Monte Carlo radiation transport modeling and experimental measurements for applications in radiation detection,
radiation protection and shielding, dosimetry, health physics, and nuclear materials accounting. | e
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RED? Laboratory — Research Collaborations

Thrust Area 1: Computational Dosimetry

Evaluation of Exposure Pathway, Internalized Uptakes, and Dosimetry for Military Personnel from
Radiological and Toxic Metal Sources

Uncertainty Analysis of Dose Coefficients for Nuclear Incident Response

Low Dose Exposure Evaluation on Human Population Health

Enhancement of Biokinetics using Physiologically-Based Models for Internalized Radionuclides

Thrust Area 2: Radiation Detection

Evaluation of Exposure Pathway, Internalized Uptakes, and Dosimetry for Military Personnel from
Radiological and Toxic Metal Sources

A Hybrid Radiation Transport Detector Response Function Methodology for Modeling
Contaminated Sites

Neutron dosimetry and Assay with a Portable Neutron Multiplicity Detector

Thrust Area 3: Radiation Shielding

Shielding Design And Optimization Of Novel MV Photon Preclinical FLASH Radiotherapy System
Activation Studies in Petawatt Laser Facilities

Thrust Area 4: Nuclear Safety, Security & Nonproliferation Policy, and Nuclear Knowledge
Management

Risk-informed Consequence-Driven Physical Protection System Optimization for Microreactor
Sites

Nuclear Material Accountancy During Disposal and Reprocessing of Molten Salt Reactor Fuel Salts
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Introduction: Pathways for Internal Exposure

1. Radiological 2. Aerosolized radioactive
event particles released from
the scenario.

3. Wide range of population
exposed to the radiological
cloud

p

)

4. Particles entering to the
HRT. CFPD analysis needed for
accurate deposition profiles.
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Introduction: Evolutions in Radiation Dosimetry

 Breakthroughs driven by « Computational capabilities have
medicine in radiation sciences afforded vast improvements in
- “Digital twins” radiation modeling
» “Personalized medicine” « Anatomical models

(anthropomorphic phantoms)
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Introduction: Evolutions in Radiation Dosimetry

« Computational capabilities have afforded vast
improvements in [radiation/biological]
modeling

 Greatest source of variability in dose assessment
from internal emitters

- Physiologically-based models of radiation e o

behavior can also employ advanced technologies
* Age
. Sex
» Non-reference
« Height
« Weight
* Pregnancy
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Overview: Evolutions Revolutions in Radiation Dosimetry

 Large and complex datasets available
» Mechanistic behavior of internalized radiation in the body can be
conducted using multi-scale models

Gr Georgia
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Multiphysics Modeling of Physiological Behavior
STRONTIUM-90 ICRP VS COMPUTATIONAL FLUID AND PARTICLE DYNAMICS DEPOSITION

MODELING

CFPD capabilities: Representative Sr-90 particle size distribution

and subject-specific human respiratory tract based on CT scans
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Multiphysics Modeling of Physiological Behavior:

3D Reconstruction
- Developed
automatized, open-
source Python
algorithms

Automated setup of
CFPD simulation.
- Pre-computed

converged grid
parameters (GCI)

Chest
+

Neck-Head
CT Scans

CFPD simulation
->Pre-validated
models

Data analysis

Turbulent Viscosity Ratio

.38.4

19.2
I2407e—09
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Multiphysics Modeling of Physiological Behavior: Al > CFPD
CT Segmentation - Convolutional Neural Network (CNN)

Original convolution 5 _
- 4-Rel U + BatchNom ) Downsampling ) Concatenation

. Dilated convolution ) Upsampling ﬁ Self-attention
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Multiphysics Modeling of Physiological Behavior: Al > CFPD
Morphological Techniques: CT Segmentation Upper HRT

Nasal cavity, automatic segmentation algorithm:
Complex geometry
Very challenging to capture all the sinus (in fact most of the manual
segmentations by physicians does not consider some cavities)

Smooth+threshold

=




Multiphysics Modeling of Physiological Behavior: Al >CFPD

Supervised Learning: Random Forest Regressor

Trained on metrics of the respiratory tract - Extract the importance of features

Male PCA

O/ <
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Unsupervised Learning: Kernel k-means Clustering

This algorithm
makes K clusters by
joining data points
that are closest to
each other.

Decision Tree-1 Decision Tree-2 Decision Tree-N
Result-1 Result-2 Result-N
L—( Majority Voting / Averaging ‘-—}

Final Result

Mixed RandomForest RSE = 17.9%

Feature Importance Weight/Age prediction
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Before clustering, using
a function or “kernel” on
the data, allows us to
“linearize” non-linear
patterns in data.
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Multiphysics Modeling of Physiological Behavior: Al >CFPD
Unsupervised Learning: Kernel k-means Clustering

» Our work show that for members of the public, the metrics best that describes each airway are
Trachea Diameter and Bronchi Angle

Clusters for Normalized/Kernelized TracheaDiameter vs Mean Angle
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Multiphysics Modeling of Physiological Behavior: Al >CFPD

Lagrangian Particle Tracking

Laminar (Nose) = Turbulent (Trachea) > Relaminarize

 Solutions to Navier Stokes
« k-omega Shear Stress Transport (SST)
Langtry Menter

« Numerical technique for simulated
tracking of particle paths.
* Coupling:
 2-way coupling considering the interaction

between the continuous and particulate phase
only by momentum exchange terms.

 4-way coupling considering particle-particle
collision; momentum exchanged between the

fluid and particles; and turbulence energy
exchange between the gas and particles
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Multiphysics Modeling of Physiological Behavior: Al >CFPD
Application - Fluid and Particle Dynamics in Respiratory Tract
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Multiphysics Modeling of Physiological Behavior: Al > CFPD
STRONTIUM-90 ICRP VS COMPUTATIONAL FLUID AND PARTICLE DYNAMICS MODELING

CFPD capabilities: Representative Sr-90 particle size distribution and subject-
HRTM for Sr-90 from ICRP 66/130 specific human respiratory tract based on CT scans
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Multiphysics Modeling of Physiological Behavior: Al > CFPD
Results: Deposition Fractions vs ICRP 130

Constant 50 L/min inflow rate - 1s injection - 2s breathing
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Multiphysics Modeling of Physiological Behavior: CFPD - Monte Carlo
STRONTIUM-90 ICRP VS CFPD AND PHITS MONTE-CARLO SOFTWARE

Rotation operation
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Multiphysics Modeling of Physiological Behavior: CFPD - Monte Carlo

STRONTIUM-90 ICRP VS CFPD AND PHITS MONTE-CARLO SOFTWARE

Organ Volume [cm?] Dose [pGy/source] Relative error [%]
Right Lung 1342.1 0.609 0.072
Left Lung 1123.8 1.069 0.062
Liver 1800.9 0.0074 1.10
Stomach 151.5 0.32 1.05
Bladder 39.7 2.57x10? 11.40
Small Intestine 672.9 0.0049 1.62
Ascending Colon  93.5 0.0025 6.12
Descending Colon  93.5 0.0075 4.41
Sigmoid Colon 41.6 5.59% 1073 14.0
Transverse Colon  124.7 0.11 3.06

Table: Dose per unit source to the most important organs
surrounding the lungs in the human body, using a I-131 as
the isotope for the point sources.




Multiphysics Modeling of Physiological Behavior: CFPD - Monte Carlo
Next Steps for Population-Specific Integration
Integration and Summary

Inhalation ( SeqFRAC_bb \ /
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U.air Magnitude

U Magnitude

Biokinetic model: Account Surrogate model:
for particle deposition, | Physiologically-enhanced
retention, and clearance - CFPD Model
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Multiphysics Modeling of Physiological Behavior. Monte Carlo = Biokinetics
PHITS SIMULATION OF RETENTION IN SOURCE ORGANS AND DETECTOR RESPONSES

Top to Bottom: Am-241, Cs-137, 1-131
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Takeaways

The use of machine-learning technologies has dramatically enhanced research
capabilities. Standardization of techniques has also broadened these capabilities.

By utilizing big datasets previously unattainable, researchers can now acquire deeper
Insights.

One example of a good study case is the human respiratory tract, due to the
abundance of publicly available data and studies.

These techniques can improve mechanistic behavior of radiation in the body,
complemented by radiation epidemiology, making these studies more representative.
Additionally, the complexity of testing, improving, and reiterating designs, methods,
and models has been significantly reduced.

ueulyid

Tech

Radiclogical Engineering, Detection, and Dosimetry



bt &)

r A n
RED2 Laboratory Team at GT EooSion I@er 2

GT Graduate Research

Students » David Gonzalez

« Dmitri Margot  Patrick Connolly

« Heechan Lee » Sherry Adadi

« Emmanuel Mate-Kole < Jesse Bruner

 Ignacio Bartol » Sergio Ruiz

« Vanessa Wei « Jarred Jordan

Key Personnel Northwestern

/ MaurICIO Tano, PhD (TAMU/INL) Feinberg School of Medicine | Radiation Oncology | Woloschak Lab Grant

» Martin Graffigna (GT, Research Engineer) Alliance for Rladiolog?yéal Exposures and Mitigation
« Lotem Buchbinder Shadur, Ph.D. (GT, Science

Postdoctoral Fellow)
Funding Acknowledgements:

GT Undergraduate Research Students - National Institute of Allergy and Infectious Diseases under award number

» Lianng Amold POTAI165380

» Alejandro Martinez , ,

- Grant Espy « Department of Defense - Peer Reviewed Medical Research Program (DOD PRMRP)
under award number W81XWH-21-1-0984

®RED? Cir e

Radiological Engineering, Detection, Dosimetry



< RED?Laboratory

239 Tweets

Questions!

& # €

RED? Laboratory
@DewjiRED2

Science is the study of what is. Engineering builds what will be. A scientist explores
that which exists, while engineer creates that which has never existed.

© Atlanta, GA & sites.gatech.edu/dewji/ ) Joined April 2019

214 Following 104 Followers

Contact:
shaheen.dewji@gatech.edu
@ red2@me.gatech.edu
) https:/isites.gatech.edu/dewsji/ RED?2

@DewjiRED2
= Laboratory
Website

Follow us on LinkedIn!
Contact Info (.vcf)
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Results: Deposition Fractions

Table: Comparison of deposition values (relative difference (RD) and absolute difference (AD)) for
polydisperse particle distribution (5 um AMAD) for light exertion level (breathing rate = 1.5 m3 h-7) by an

adult male
Region In-house ICRP 130 RD% AD%
Dep_Module

ET1 0.491 0.492 -0.345 -0.170

ET2 0.264 0.265 -0.377 -0.100

BB 0.018 0.018 -1.110 -0.020

bb 0.009 0.009 -2.537 -0.023

Al 0.049 0.045 10.250 0.460
Total 0.831 0.829 0.178 0.147 | . Gr Gngflgia
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Automated 3D CT-based algorithm of real patients

(EXACT '09 and TCIA databases) used to reconstruct

realistic HRT geometry representative of population.

* Inclusion of the nasal cavity and the paranasal
sinuses (omitted in prior non-radiation studies).

« Significantly impact overall biodistribution of
radionuclides body.

Reduced-order discrete element model (DEM) of the

CFPD modeling the complex physics in the airways

(laminar to turbulent to irregular laminar)

 Integrated into a Bayesian analysis of aerosol
dynamics for improving HRT transfer coefficients
(Aim 1, 3).

Sensitivity analysis will be conducted compared to

ICRP’s 15 generation HRTM deterministic phantom

model

» Revised S-values, harnessing morphometric/
physiological data and particulate distribution
(morphology, deposition velocity)

« Benchmarked with animal tomogram data of
deposition from aluminosilicate particles.

5, Georgia
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Al  Convolutional Neural Network: Basic Operations

Self-attention Dilated Convolution Regular Convolution

Provides a way to focus on different
sections of data at a time

14

RelLU Activation Function Batch Normalization Concatenation
(positive if convolved pixel above a certain
threshold)
m
e = Zi=1xi batch mean img Ty |
_y " 2 ;
‘ — O = Em(xf— i bmh) batch variance —p
_ xi - ‘ubatch
o e V O-batchz + £ data —l/
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Al >CFPD > Advanced Mathematics

Singular Value Decomposition: Principal Component Analysis

Extracts the dimension or “Component” in the data with more linear variance.

Essentially, it looks for the direction in which the data is most spread

Variable2 4

>

Variable 1

PCA

Variable2 4

PCA2

>

PCA1

|

>

Variable 1
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Al >CFPD - Advanced Mathematics - Al
Supervised Learning: Random Forest Regressor

« Used to evaluate the most essential features in the dataset.
 The most used variable by the decision trees to divide the branches

is the feature that best describes the dataset

Elements of a decision tree

Condition (choice)

v

Decisionnode

Alternatives —_—

Branch Branch

Decisionnode Decisionnode

Decision Tree-1

) Result-1
Decisions Leaf Leaf Leaf Leaf
(outcomes)

Random Forest

eeeeeeeeeeeeee

RRRRRRRR

Final Result



Finite Volume method - Reynold Average Navier-Stokes (RANS)

Finite Volume Method Turbulence Modeling:

Closure Equation: RANS - k-w

 Used to model fluid dynamics numerically. . .
« No analytical theory to predict turbulence -

* Preserve quantities such as energy and mass persists at all scales (macro/meso/micro).

— Physically meaningful .
« Model averages flow and treats fluctuations

» The exact method for average values — fewer separately.
approximations committed

Thermal
kinetic Average
energy flow

dissipation

Turbulen$

Energy
production

Georgia
Tech




Expanding Capabilities

« Generative Adversarial Networks (GAN’s) can model bone remodeling
processes in orthopedics or dental applications. These models could
predict bone growth or resorption patterns and assist in treatment
planning for fractures, joint replacements, or dental implants.

 Convolutional Neural Networks (CNN’s) can analyze endoscopic images
or other Gl-related data to detect abnormalities, such as polyps, ulcers, or
lesions. These models could help in early diagnosis and treatment
planning for conditions like colorectal cancer or inflammatory bowel
disease.

 Convolutional Neural Networks (CNN’s) could analyze medical images
like MRIs or CT scans to detect and quantify abnormalities in blood
vessels. This can aid in diagnosing conditions like aneurysms, vascular
stenosis, or arteriovenous malformations.
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