

DukeHealth

Introduction

- Al-based virtual log file patient-specific QA (PSQA) consists of predicting linear accelerator parameters at delivery for a new treatment plan, based on an Al model trained using delivery-based log files from prior patients [1-3].
- This tool has the potential to enhance current IMRT QA workflows and enable a pre-treatment analysis for online-adaptive RT.
- We perform a dosimetric comparison of PSQA using Al-based virtual log files versus delivery-based log files directly from the 1st fraction treatment.

Methods

- We utilized a Monte Carlo dose calculation algorithm (SciMoCa) to compare calculated dose distributions from (1) secondary dose calculation of the Eclipse treatment plan, (2) AI-based virtual log files, and (3) delivery-based log files recorded during 1st fraction treatment delivery on a Varian TrueBeam linear accelerator.
- We quantified the differences in PTV D99%, D95%, D1%, Dmean, D50%, and V100%. To evaluate effects on normal tissue, we quantified the differences in ring structures surrounding the PTV at distances of 0-3 mm, 3-6 mm, and 6-9 mm; dose indices for ring structures included Dmean, D99%, D50%, and D1%.

Site	Technique(s)	Range of PTV volume (cm ³)	Site	Technique(s)	Range of PTV volume (cm ³)
Single-target SRS	VMAT	7.2 - 51.1	GI	VMAT	24.9 - 3206.8
Multi-target SRS	VMAT	1.5 - 17.6	GU	IMRT/VMAT	40.8 - 879.1
Spine	VMAT	9.2 - 136.9	Breast	IMRT/VMAT	140.8 - 1777.9
HN	VMAT	9.6 - 321.6	GYN	VMAT	300.1 - 1947.5
Lung	VMAT	32.9 - 239.2	Sarcoma	IMRT/VMAT	354.5 - 996.2

Dosimetric Analysis on Al-based Virtual Log File Patient-specific QA

Kai-Cheng Chuang¹, Yuyao Wu², Lam Lay¹, Guoqiang Cui¹, Jennifer O'Daniel¹, Justus Adamson¹ ¹ Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA ² Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, China

- (Figure 1).
- (Figure 2).
- relationship The linear significant showed a correlation between the differences comparing Albased virtual log files versus secondary dose calculations differences the and comparing delivery-based log files versus secondary dose calculations (slope = 0.53, r^2 = 0.17, p-value <0.001, Figure 3).

Conclusions

- AI-based virtual log files can be used to predict the to enhance PSQA.
- We believe it is the first study to dosimetrically compare treatment).

Results

• The differences between the doses calculated with AI-based virtual log files and delivery-based log files directly from 1st fraction treatment were minimal, with most differences being within 1%

When comparing the dose indices differences of AI-based virtual log files versus secondary dose calculations and the differences of delivery-based log files directly from 1st fraction treatment versus secondary dose calculations, most differences were within 2%

secondary dose calculations and the differences of delivery-based log files directly from 1st fraction treatment versus secondary dose calculations

dosimetric results of delivery-based log files and have the potential to become a "delivery-free" pre-treatment analysis

secondary dose calculations, AI-based virtual log files, and delivery-based log files (recorded during 1st fraction

Acknowledgments & References

[1] Lay, Lam M., et al., *JACMP* 2022. [2] Witztum, Alon, Gilmer Valdes, and Maria F. Chan., Al *in ROBP* 2024. [3] Chuang, Kai-Cheng., et al., *Med Phys* 2021. Funding for this work was provided by Department of Radiation Oncology, DUMC. Contact information: Kai-Cheng Chuang,

kai-cheng.chuang@duke.edu

Dose indices

Figure 2 Dose indices differences of AI-based virtual log files versus secondary dose calculations and the differences of delivery-based log files from 1st fraction treatment versus secondary dose calculations.