Anthropomorphic Mouse Phantoms and Accurate Small Animal Radiation in Cabinet Irradiators

<u>Gretchen Carpenter¹</u>, Ryan Duke¹, David Gladstone^{1,2,3}, Jack Hoopes^{2,3}

¹Thayer School of Engineering, Dartmouth College, Hanover, NH, ²Geisel School of Medicine, Dartmouth College, Hanover, NH, ³Dartmouth Cancer Center, Hanover, NH

Introduction & Motivation:

- 1. Preliminary animal studies found 10% RBE between orthovoltage x-ray and 137-Cs in mice
- 2. In vitro work found no biological difference
- 3. Animal studies calibrate x-ray sources with TG-61 in-air method
- 4. Monte Carlos simulations of cabinet irradiators found up to 50% dose errors when geometry is not considered during calibration

Methods:

- Assess dose in mouse phantom for various calibration procedures
- Characterize external factors on dose (temp/pres, collimator, etc.)

Results:

- Higher potential for dose variability (daily fluctuations, duration of use, collimator, heel)
- Potential for small buildup at high HVL beams $(d_{max} \approx 0.2 \text{ cm})$

- Large difference in dose measured depending on in-air and in-water calibration protocol. Inwater more accurate.

