Debunking Myths and Urban Legends in Ionizing Radiation Dosimetry

Chris Passmore, CHP Chief Technology Officer Radiation Detection Company

NVLAP Performance Testing Categories

	Accident Photons		
E A CARACTERIA CONTRACTORIO CO	Photons/Photon Mixtures		
β	Beta		
	Beta/Photon Mixtures	IV	
γ	Neutrons/Photons	V	

NVLAP Category I - Accident

NVLAP Category II – Pure Photon & Photon Mixtures

NVLAP Category III - Betas

NVLAP Category IV – Photon & Beta Mixtures

NVLAP Category V – Neutron & Photon Mixtures

NVLAP Scope of Accreditation Listing on NIST Website

- NVLAP Scope of Accreditation for Ionizing Radiation Dosimetry
 - <u>http://www-s.nist.gov/niws/index.cfm?event=directory.search#no-back</u>

Search		
Brogrami	logizing Padisting Docimetry	•
Program:	ionzing kaulation Dosimetry	
Country:	- All Countries -	•
Laboratory Name / NVLAP Lab Code:	Enter Laboratory Name or Code	
Keyword:		

List of Accredited Labs

https://www-s.nist.gov/niws/index.cfm?event=directory.results

	ЭГ									
🖨 Nati	ional Voluntary I	aboratory Accreditation Program (NVLAP) > Directory > Search Result	ts							
	Search Criteria	a								
	Area of Accr	Program: Ionizing Radiation Dosimetry editation: All	Country: All Countries							
	Search Result	5								
			Search:							
	Show All 🗸 entr	ies	Sea	arch:						
	Show All v entr Lab Code	Lab Name	Sea City	arch: State 🔶	Country 🔶					
	Show All v entr Lab Code	ries Lab Name	City	arch: State 🔶	Country 🔶 US					
_	Show All v entr Lab Code 4 100504-0 100505-0	ries Lab Name Naval Dosimetry Center Duke Energy Dosimetry Laboratory	City Bethesda Huntersville	Arch: State 🔶 MD NC	Country 🔶 US US					
	Show All v entr Lab Code 4 100504-0 100505-0 100512-0	ries Lab Name Naval Dosimetry Center Duke Energy Dosimetry Laboratory Radiation Detection Company	Sea City (* Bethesda Huntersville Georgetown	State MD NC TX	Country 🔶 US US US					
	Show All v entri Lab Code 100504-0 100505-0 100512-0 100518-0	ries Lab Name Naval Dosimetry Center Duke Energy Dosimetry Laboratory Radiation Detection Company Landauer, Inc.	Sea City	State MD NC TX IL	Country US US US US US US					
	Show All v entr Lab Code 100504-0 100512-0 100518-0 100536-0	Lab Name Naval Dosimetry Center Duke Energy Dosimetry Laboratory Radiation Detection Company Landauer, Inc. Arizona Public Service Co., Palo Verde Nuclear Generating Station	Sea City	State MD NC TX IL AZ	Country ♦ US US US US US US US US					

Specific Dosimetry Laboratory

NIST

* National Voluntary Laboratory Accreditation Program (NVLAP) > Directory > Lab Accreditation > Naval Dosimetry Center (100504-0)

Lab Information

Lab Name:	Naval Dosimetry Center	Lab Code: Website:	100504-0			
Address:	4975 North Palmer Road, Bldg 84T Q Bethesda, MD 20889-5629 United States	Contact:	Jeffrey Delzer ▼ email: <i>jeffrey.a.delzer.mil@mail.mil</i> ↓ phone: <i>301-295-5410</i> ■ fax:			
Accreditation:						
🗰 Ionizing	g Radiation Dosimetry					
Expiration	iration Date: Dec 31, 2022 Download Documents:					

Dosimetry Laboratory Scope

Commercial Dosimetry Laboratories

Summary of Commercial Labs NVLAP Scope of Accreditation (Yellow Indicates Limitations in Dosimeter as of September 2022)

			Accident			Photons		Be	etas	Mixture (Photon + Beta)			Mixture (Neutron + Photon)		
Laboratory	Whole-Body Dosimeter Model	Dosimetry Technology	IA	IB	IIA	IIB	IIC	IIIA	IIIB	IVAA	IVAB	IVAC	VAA	VBA	VCA
RDC	Code 82 TLD Model XBGN	$^{n}\text{Li}_{2}\text{B}_{4}\text{O}_{7}$ / CaSO ₄	x		x			x		x					
RDC	Code 82H TLD XBGN	⁷ LiF:Mg,Cu,P / ⁶ LiF:Mg,Cu,P	x		x			x		x					x
Landauer	Luxel+ Pa (A4)	Al ₂ O ₃ :C	x		x			x		x					
Landauer	Luxel+ Ta (A5)	Al ₂ O ₃ :C / CR-39	x		x			х		x					x
Landauer	Luxel+ Ja (B3)	Al₂O₃:C / CR-39	x		x			x		x					x
Landauer	Luxel+ Pa Escort Card (B6)	Al ₂ O ₃ :C	х												
Landauer	InLight LDR Model 2 - L02N (A7)	Al ₂ O ₃ :C	х		x			х		x					
Landauer	InLight LDR Model 2 - L02N (A9)	Al ₂ O ₃ :C / CR-39	x		x			х		x					x
Landauer	InLight LDR Model 2 OSLN - L11N (C1)	Al ₂ O ₃ :C / Al ₂ O ₃ :C + ⁶ Li ₂ CO ₃	x		x			х		x					x
Landauer	InLight LDR Model 2T OSLN - L02N (C1)	Al ₂ O ₃ :C / Al ₂ O ₃ :C + ⁶ Li ₂ CO ₃ / CR-39	x		x			х		х					x
Landauer	RadWatch Model 1	Al ₂ O ₃ :C Mipox	х				x								
Mirion	RemTrak Wallet Card (100555-G)	°LiF:Mg,Ti		х		x									
Mirion	Apex (100555-B6)	ВеО	х		x				х		x				
Mirion	TLD 760 -PB (100555-H)	⁷ LiF:Mg,Ti / ⁶ LiF:Mg,Ti	x		х			x		x					x
Mirion	Genesis TLD-760-DB (100555-Z)	⁷ LiF:Mg,Ti / ⁶ LiF:Mg,Ti	x		x			x		x					x
Mirion	Genesis Ultra TLD-MCP-BP (100555-B9)	⁷ LiF:Mg,Cu,P / ⁶ LiF:Mg,Cu,P	x		x			x		x					x
Mirion	Genesis Ultra TLD-MCP-DB (100555-A1)	⁷ LiF:Mg,Cu,P / ⁶ LiF:Mg,Cu,P	x		x			x		x					x
Mirion	Genesis Ultra-CR39 TLD-MCP-DB-CR-39 (100555-Y)	⁷ LiF:Mg,Cu,P / ⁶ LiF:Mg,Cu,P / CR-39	x		x			x		x					x
Mirion	Instadose ID-1.6 (100555-A7)	DIS	х		х										
Mirion	Instadose ID-1.7 (100555-B4)	DIS	х		x										
Mirion	Instadose 1+ (100555-B7)	DIS	х		x										
Mirion	Instadose 2 (100555-B8)	DIS	х		х				х						
PL Medical	Panasonic TLD UD802AT/874AICM	$^{n}\text{Li}_{2}\text{B}_{4}\text{O}_{7}$ / CaSO ₄	x		x			x		x					
PL Medical	Landauer OSL InLight Model 2	Al ₂ O ₃ :C	x		x			x		x					
Best Dosimetry	Harshaw Type 8840 TLD Model 0806000220 Holder	7LiF:Mg,Cu,P / ⁶ LiF:Mg,Cu,P	x		x			x							x
ThermoFisher	NetDose Gamma (600295-A1)	SiPM	х		x										

Buyer Beware

- NVLAP is a license to hunt for processor, but buyer beware
 - If a dosimetry provider selects specific photon or beta performance testing categories B or C then they need specific information about the radiation field to accurately assess dose.
 - If a category is not tested then the dosimeter is not accredited for that radiation environment.
 - If the dosimetry processor select only category A, General, the dosimeter does not require a priori knowledge of the radiation environment to accurately assess the dose
- NRC noticed that licenses were not using appropriate dosimeters for their radiation fields.
 - Nuclear Regulatory Commission (NRC) issued NRC Information Notice 2014-05, <u>Verifying Appropriate Dosimetry Evaluation</u>
- If the dosimeter is not tested in category A then the dosimeter has a limitation and the RSO must be vigilant!

Real World Example – ^{99m}Tc Generator

- Tc-99m Generators
 - Radiation field = photons 141, 740, and 778 keV mixed with beta E_{max} of 436, 548, and 1214 keV
 - Dosimeter must be accredited at a minimum for IIB, IIC, IIIA, IVBA, and IVCA.
 - Instadose 1, Instadose+, Instadose 2, NetDose, Apex BeOSL, Luxel+ Pa Escort Card, RemTrak, RadWatch, and Best's Harshaw Type 8840 dosimeters should not be used in this field.

Real World Example – ¹⁰⁶Ru/¹⁰⁶Rh Brachytherapy

- ¹⁰⁶Ru/¹⁰⁶Rh Brachytherapy for ocular melanoma
 - Radiation field = photons 512, 622, and 1050 keV mixed with beta E_{max} of 39, 2407, and 3541 keV
 - Note a beta energy less than 70 keV cannot penetrate the dead layer of skin of 0.07 mm and will not contribute to the total shallow dose.
 - Dosimeter must be accredited to cover high energy photons, high energy betas, and mixtures of high energy photon / high energy betas.
 - Dosimeters not accredited in IIA, IIIA, and IVAA would at a minimum need to be accredited to IIC, IIIB, and IVCB.
 - Instadose 1, Instadose+, NetDose, Luxel+ Pa Escort Card, RemTrak, RadWatch, and Best's Harshaw Type 8840 dosimeters should not be used in this field.

Real World Example – Boron-Neutron Capture Therapy

- Boron-Neutron Capture Therapy is a process where ¹⁰B is delivered to a tumor and then irradiated with thermal neutrons which yields ⁷Li and alpha particles to kill the tumor.
 - Workers must wear dosimeters with neutron monitoring capabilities.
 - The following dosimeters are not tested in the neutron category and should not be used.
 - RDC XBGN Panasonic, Luxel Pa, InLight LDR Model 2, Luxel+ Pa Escort, RadWatch, RemTrak, Apex BeOSL, Instadose 1, Instadose 1+, Instadose 2, PL Medical Panasonic, PL Medical InLight, Best Medical Harshaw, and NetDose.

Technologies Used in US Market

LLD Misconceptions

Comparison of LLD as a Function of Time for Various Dosimeter Technologies

- Lower Limit of Detection (LLD) varies as a function of monitoring frequency.
 - LLD varies due to the standard deviation of the background dosimeters, Equation 1.
- Using an LLD of 1 mrem for all monitoring frequencies will lead to inaccurate reporting of dose.

Equation 1. Lower Limit of Detection

LLD =
$$\frac{2[t_p S_0 + (t_p S_1 / H_1)^2 H'_0}{[1 - (t_p S_1 / H_1)^2]}$$

 t_p = t distribution for n-1 degree of freedom and a p value of 0.95 S_o = standard deviation of the unirradiated dosimeter results S_i = standard deviation of the irradiated dosimeter results H_1 = average of the irradiated dosimeter results H'_o = average of the unirradiated dosimeter results without subtracting background

Fade - Urban Legends

Comparison of Fade for Various Dosimeter Technologies

- Fade is the loss of signal induced in a detector over time post irradiation.
 - BeO, Al₂O₃:C, and LiF:Mg,Cu,P have similar fade of ~4% per year.
 - Even though LiF:Mg,Cu,P has been around since 1994 its fade is mistakenly assumed to be the same as LiF:Mg,Ti.
 - LiF:Mg,Ti TLD systems can be optimized to significantly improve fade using a preanneal process.

Balancing Dosimetry Technology and Compliance Surveillance

- Excessive Monitoring
- LLD might not be reached.
- Masking the number of workers exceeding 1 mSv (100 mrem) per year.
- Consequence missed dose
 - Moving from a Monthly monitoring frequency to Quarterly reduces the potential missed dose by a factor of 2.

- Insufficient Monitoring
- Risk of compliance issue.
- Slow reaction time to detect and correct unusual exposure situations.
- Consequences would be Compliance issue or ALARA Level exceeded.

Conclusion

Extending monitoring frequencies results in more accurate dose result for dosimeters recording "M" or <1 mSv (100 mrem) and does not jeopardize compliance.

- Monthly to Quarterly gives worker an additional 2 months to exceed the LLD.
- Quarterly to annual give worker an additional 9 months to exceed LLD.

Conclusion

- The RSO needs to be aware of the following aspects when selecting a dosimeter:
 - 1. Is the dosimeter suitable for the radiation field?
 - Compare the radiation field with the scope of accreditation to assess proper coverage.
 - 2. Monitoring frequency needs to be selected based on your need for information and the worker's probability to exceed the LLD for the wear period.
 - 3. Lower limit of detection gives the RSO a scientific approach to compare dosimeters.
 - Do you really care about a 1-day LLD of 1 mrem? The RSO really needs to know if the dosimeter will be worn long enough for the worker to reach the LLD for the wear period.
 - 4. Fade is an important characteristic of a dosimetry system. The loss in signal can result in underestimating the occupational exposure.

