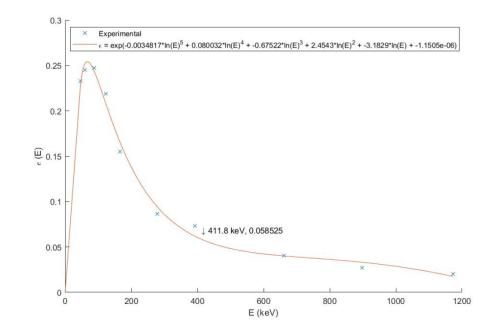
3D Scanning and 3D Printing of Radioactive Sources

Steven Biegalski and Christopher Wells Georgia Institute of Technology

steven.biegalski@me.gatech.edu

Outline


- Problem Statement
- Historical Paths to Solving this Problem
- Experimental Method
- Results
- Conclusions

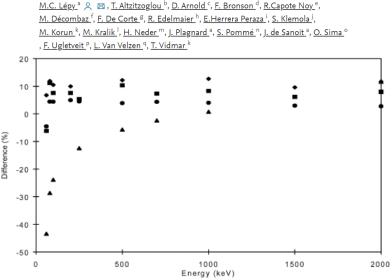
Problem Statement

- Gamma-ray spectroscopy requires three calibrations:
 - Energy to channel
 - Energy to resolution
 - Energy to efficiency
- The comparator method is popular for the energy to efficiency calibration.
- This method allows for unique sample geometries to be generated for comparator method calibrations.

Problem Statement Continued

 Radioactive sample quantification is often desired for uniquely shaped items.

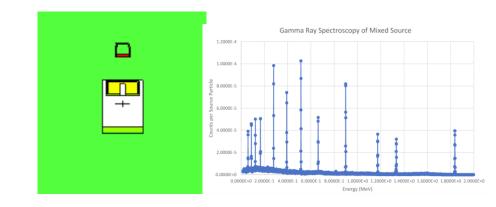
Historical Paths to Solving this Problem

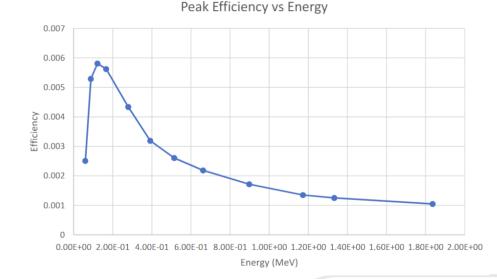

- One path to address this problem is via computational methods.
- Lepy et al. (2001) "Intercomparison of efficiency transfer software for gamma-ray spectrometry" compared many codes to calculate detector efficiency curves.
- The results showed that the computational methods had uncertainty in the range of 5% to 10%

Applied Radiation and Isotopes Volume 55, Issue 4, October 2001, Pages 493-503

- m	pplied Radiation and salopes	
僗	Anna an Anna an Anna an Anna Anna an Anna an Anna an	
*		
-11		
-		
-		

Intercomparison of efficiency transfer software for gamma-ray spectrometry




Difference (%) between computed and experimental efficiencies for the reference distance using the supplier's data for different codes (■=code B4, •=code 5-a, ♦=code C3, •=code C1).

Monte Carlo Methods

- Codes including MCNP and GEANT are commonly utilized to model detector efficiencies.
- Problems exist in precise modeling of the detector including features such as the dead layer.
- Model entry and export control of software can add complications.

Project for NRE 3112 Radiation Detection at Georgia Institute of Technology

Mesh-Grid Method

- Semiempirical meshgrid method and works for arbitrary source shapes and counting geometries have also been developed.
- Can work with arbitrary source shapes.
- Minimal computational resources.
- Most results are better than 10%.

J Radioanal Nucl Chem (2009) 282:223–226 DOI 10.1007/s10967-009-0246-9

A software package using a mesh-grid method for simulating HPGe detector efficiencies

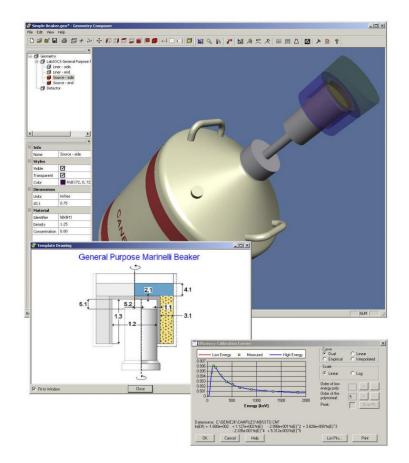
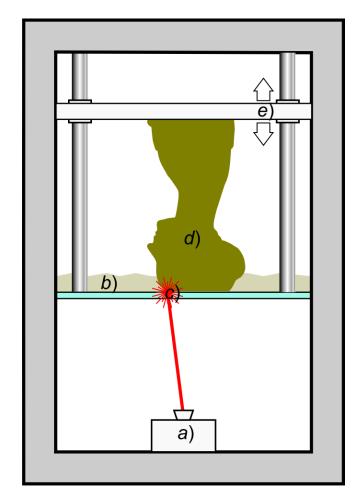

K. R. Jackman · R. E. Gritzo · S. R. Biegalski

 Table 3 Experimentally measured efficiencies and KMESS effective solid angle calculated efficiencies for a volume source at a distance of 0.474 cm

Energy (keV)	Experimental efficiency	Effective solid angle efficiency	Difference (%)
59.54	3.472E-03	3.050E-03	12.16
88.04	9.409E-03	9.054E-03	3.78
122.06	1.154E-02	1.146E-02	0.74
165.86	1.083E-02	1.085E - 02	-0.17
279.20	7.147E-03	7.237E-03	-1.26
391.69	5.069E-03	5.145E-03	-1.51
661.66	2.982E-03	3.054E-03	-2.42
898.04	2.215E-03	2.288E-03	-3.28
1173.24	1.724E-03	1.796E-03	-4.16
1332.50	1.536E-03	1.607E - 03	-4.65
1836.06	1.164E-03	1.235E-03	-6.09

Commercial Software

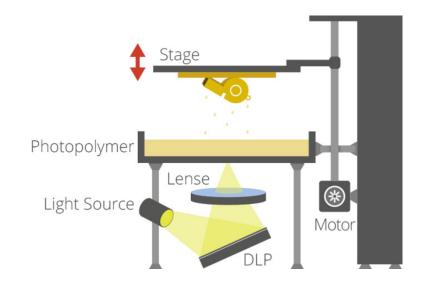
- Mirion's LabSOCS (Laboratory Sourceless Calibration Software) mathematical efficiency software is an option for solving this problem.
- Each detector is computationally characterized.
- Users may enter in source geometries.



https://www.mirion.com/products/labsocs-calibration-software

3D Scanning and Printing

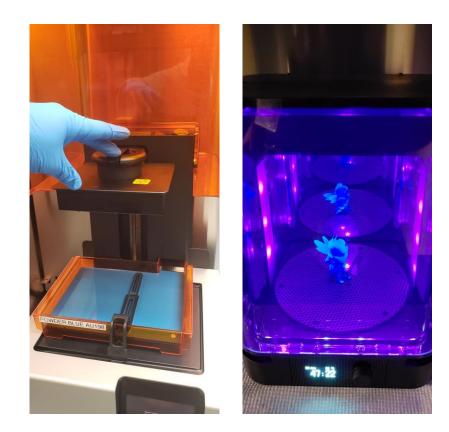
- Current additive manufacturing methods offer an alternative solution to this problem.
- Unique radioactive source geometries may be printed to match unique sample geometries.
- Geometries may be developed via CAD software. They may also be developed via 3D scanners.



https://en.wikipedia.org/wiki/Stereolithography

Stereolithography

- Stereolihography is the additive manufacturing method used for this project.
- Photopolymerisation of a resin is utilized to build objects.
- Post processing of samples are necessary to clean sample and solidify polymer.

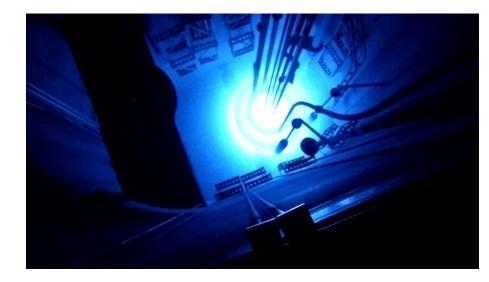


https://www.3dprinting.lighting/

Experimental Method

- 1. Scanning
- 2. Isotope production
- 3. Resin mixing
- 4. 3D printing

Scanning

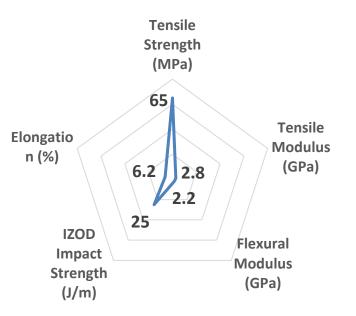

- A Matter and Form V2 3D scanner is utilized to create a .stl file.
- The 3D scanner has a HD CMOS sensor with two lasers.
- .stl file converted to gcode for printing.

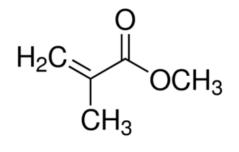
Isotope Production

- A NIST gold standard solution is irradiated (Au in HCl solution).
- For these experiments, the solution is irradiated in the 3L facility at The University of Texas TRIGA reactor.
- Targeted activity is approximately 1 kBq per sample.

Resin Mixing

- Formlabs clear resin was utilized.
- ¹⁹⁸Au was combined with the resin in a 1 liter beaker.
- A Cole-Palmer EW-50006-03 compact digital mixer was utilized to mix the gold into the resin.
- Resin was mixed for five minutes.





Materials: Standard Resin

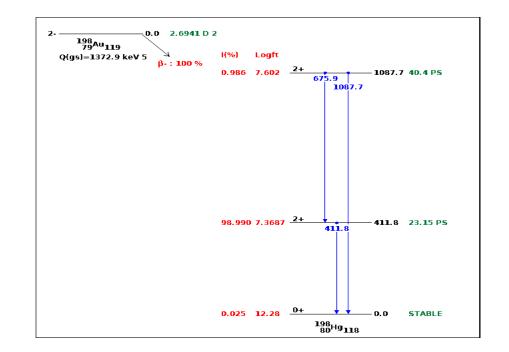
Compound	% Weight Contribution	C.A.S No.
Methacrylated oligomers	Proprietary	Proprietary
Methacrylated monomers	Proprietary	Proprietary
Photoinitiator(s)	Proprietary	Proprietary
Pigments	<0.1	Proprietary
Additives	<0.5	Proprietary

Property	Value	Units
Specific Gravity	1.085 ± 0.005	g/cm ³
Viscosity	8.75 ± 0.25	g/cm·sec
Boiling Point	> 100	°C
Flash Point	≻ 100	°C
Vapor Pressure	Unk	Ра

Printing

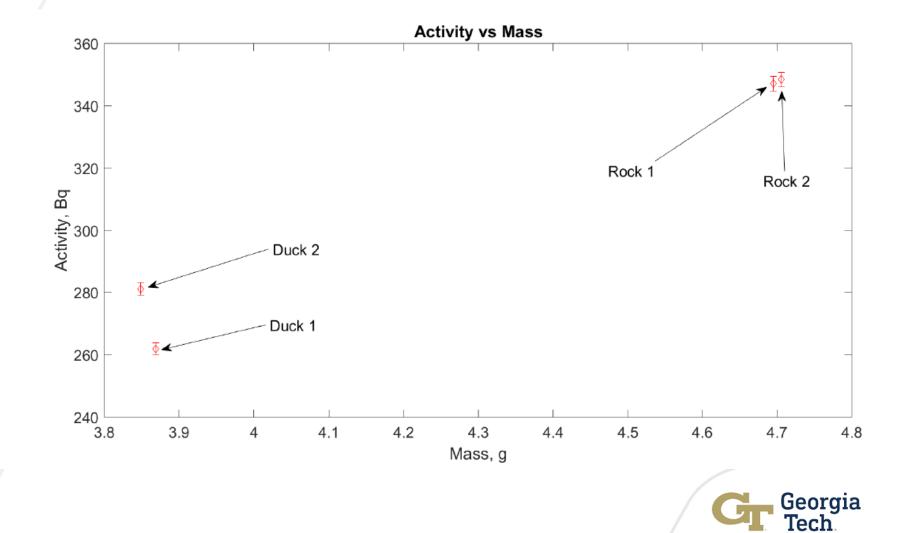
- Formlabs stereolithography system utilized for printing.
- Form Wash and Form Cure used to clean and cure the samples.

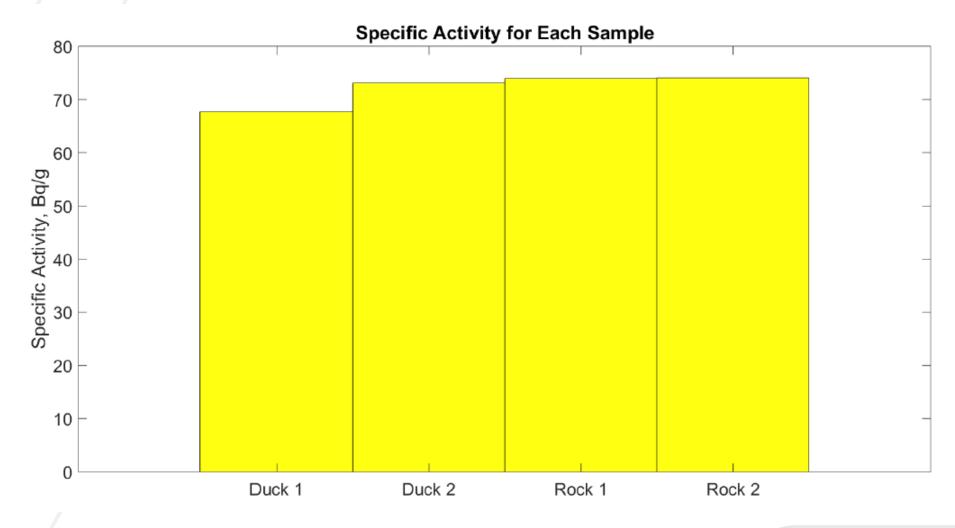
Gamma-Ray Spectroscopy


- Gamma-ray spectroscopy conducted on Canberra Broad Energy High Purity Germanium (BEGe) detector.
- GENIE-PC utilized for counting and spectrum analysis.
- Samples were counted to achieve 1% counting statistics.
- Dead-times were less than 1%.

Results

- Multiple sample geometries were explored.
- Goal was to look at replications and reproducibility of both mass and activity.
- Both total activity and specific activity were examined.


Ducks and Rocks



Ducks and Rocks Results

Specific Activity

Conclusions

- Samples with complicated geometries were scanned and then printed with a resin with ¹⁹⁸Au mixed in.
- Radioactive facsimiles were produced and then counted on a HPGe detector.
- Mass differences between replicated samples was 0.2%.
- Specific activity was 72.18 ± 3.033 Bq/g (4% standard deviation).
- Work needs to be conducted to improve homogeneity of resin during printing.
- Given initial results, it is practical to foresee this method reducing uncertainty and approaching 1%.

