IAEA Dosimetry Laboratory

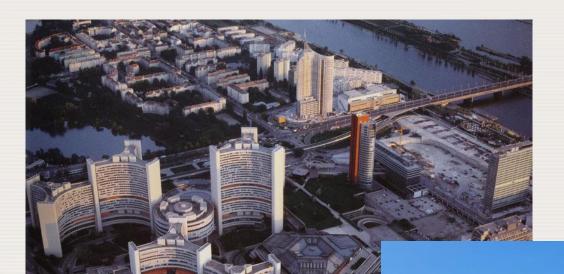
Ladislav CZAP International Atomic Energy Agency Vienna, Austria

CIRMS Annual meeting, April 17-19 2023

Content

- Brief history
- Services provided to the member states
- Calibration capabilities
- Robotic calibration bench

- 1954 1956 Negotiation of the IAEA's Statute (approved by 81 nations in October 1956)
- 1957 The Preparatory
 Commission and the First
 General Conference
- 11-Dec-1957 Headquarters
 Agreement between Austria
 and the IAEA

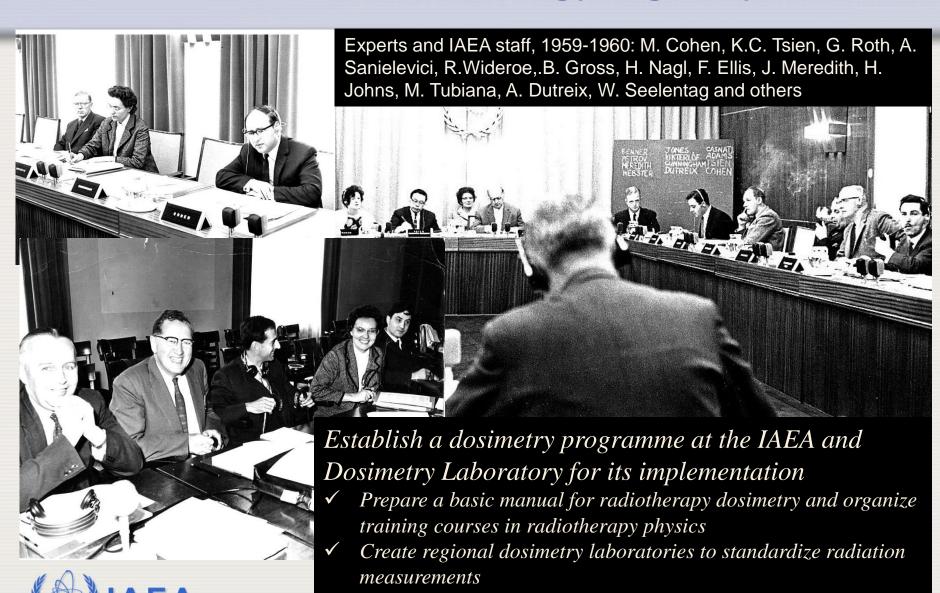


Ring Hotel, Vienna

The IAEA established in 1957 in response to the deep fears and expectations generated by discoveries and diverse use of nuclear technology

Vienna International Centre (VIC) Since 1979 international organizations UNOV, CTBTO, UNODC, IAEA, UNIDO, UNHCR ...

CIRMS Annual meeting, April 17-19 2023



Why the IAEA got involved in radiation dosimetry?

In late 50s

- Only a few primary standards dosimetry laboratories, no national dosimetry laboratories in many industrialized countries, no calibration laboratories in developing countries
- No dosimetry standards for absorbed dose determination in radiotherapy
- No dosimetry protocols to guide physicists on radiotherapy beam calibration
- No inter-institution dosimetry comparisons
- Lack of medical physicists in many radiotherapy centres

Make inter-comparisons of dose measurements

IAEA laboratories in Seibersdorf, Austria

1959

IAEA Laboratories, Seibersdorf

...facilitating research, capacity building and technical services.

Insect Pest Control

Food and Environmental Protection

Terrestrial Environment

Nuclear Sciences and Instrumentation

Plant Breeding and Genetics

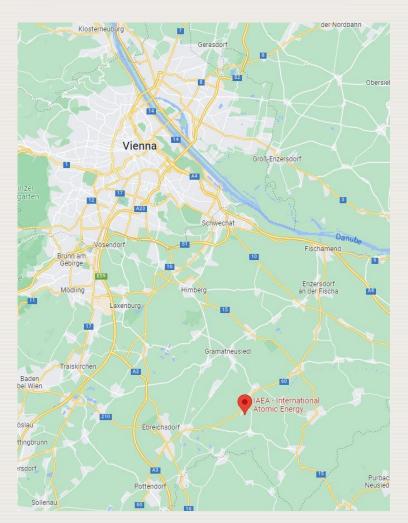
Soil and Water
Management
and Crop
Nutrition

Animal Production and Health

Dosimetry

IAEA Nuclear Applications Laboratories

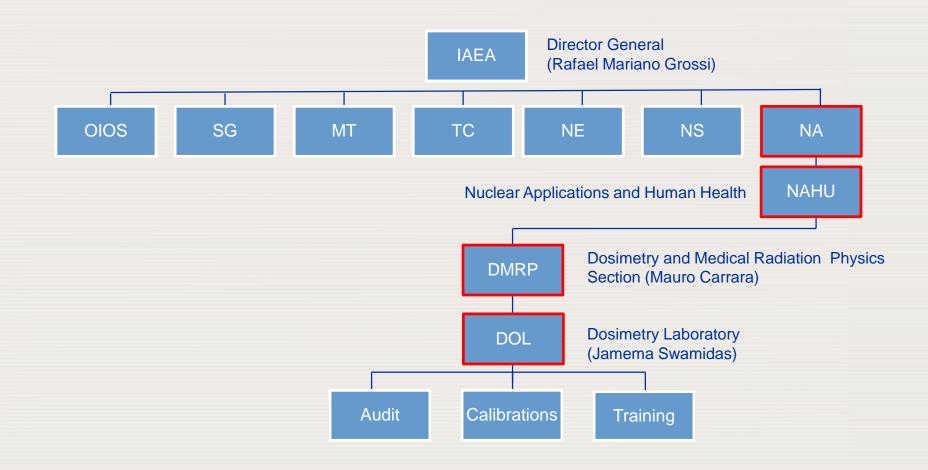
Vienna


Seibersdorf, Austria

IAEA Laboratories, Seibersdorf

40 km SE of Vienna

within the compound of AIT (Austrian Institute of Technology)



IAEA Dosimetry Laboratory

IAEA Dosimetry Laboratory

DMRP – Section Heads

H. Eisenlohr, 1971-1987

H. Svensson, 1987-1994

P. Andreo, 1995-2000 2003-2008

- 1960-1961: setting-up the Dosimetry Laboratory
- 1961-1966: dose comparison measurements for radiotherapy (calorimetry, Fricke dosimetry)
- 1969: 1st documented IAEA/WHO TLD audit run for radiotherapy centres
- 1970: 1st international dosimetry protocol by the IAEA, TRS-110
- 1974: 1st regional dosimetry laboratories supported by WHO/IAEA
- 1976: formal launch of the IAEA/WHO SSDL Network with 8 SSDLs and affiliated organizations (BIPM, ICRU, IEC, OIML, IOMP, 11 PSDLs)
- 1987: SSDL Scientific Committee, TRS-277
- 1999: IAEA signs CIPM Mutual Recognition Arrangement (MRI)
- 2000: TRS-398 Dosimetry Code of Practice

DMRP – Section Heads

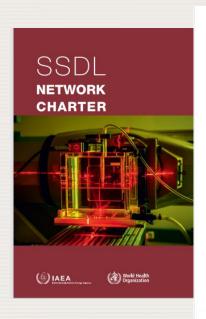

H. Eisenlohr, 1971-1987

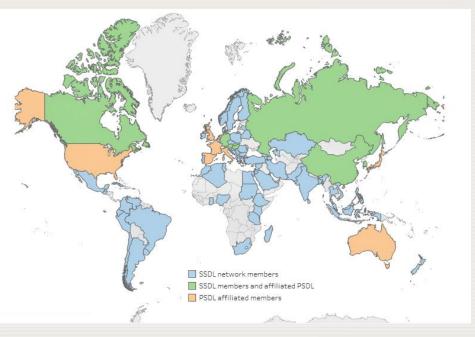
H. Svensson, 1987-1994

P. Andreo, 1995-2000 2003-2008

K.R. Shortt, 2001-2007

A. Meghzifene, 2007-2016


D. Van der Merwe, 2017-2022



M. Carrara, 2023 -

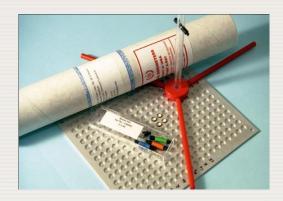
IAEA / WHO Network of SSDLs

- Membership: 90 labs in 75 Member States.
- IAEA is the central laboratory of the IAEA/WHO SSDL Network.
- Objective of the network
 - Accurate and consistent dosimetry
 - Traceability
 - Cooperation
 - Sustainability

IAEA services provided to the SSDL Network:

- Disseminating traceability: calibration of reference standards from SSDLs
- Measurement validation: comparisons and audits of performance
- Training, workshops, scientific meetings

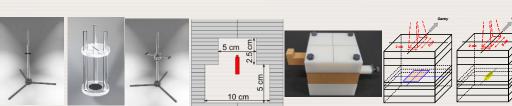
IAEA Dosimetry Laboratory

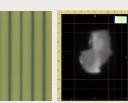

IAEA/WHO SSDL Network

- Dosimetry calibrations
- Inter-laboratory comparisons and audits of performance

Dose Assurance Service

- IAEA/WHO Dosimetry Audit Network
- Support to national audit Networks
- Support to QUATRO





IAEA Audits in radiotherapy

REMOTE: RPLD and film-based audit methodologies of increased complexity: "Steps 1 to 9"

15 Dosimetry audit networks participated on different stages of the project implemented through 4 consecutive CRPs

ON-SITE: QUATRO/QUATRO-physics

3D CRT audits

IMRT audits

51 Member States101 QUATRO missions

8 Member States 60 RT centres

17 Member States

1969: First TLD sent to hospitals

1981: Audit offered to SSDLs

1991: First Linac beam audited

1996: Follow-up of poor results

2004: Quality Assurance Team for Radiation Oncology

2008: On-site TPS end-to-end audits

2017: RPLD-based remote audits, Small field photon beam.

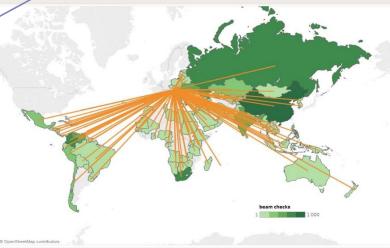
2018: On-site IMRT/VMAT end-to-end audits

2019: Reference Irradiations for Dosimetry Audit Network.

2021: Electron audits 2024: Brachytherapy?

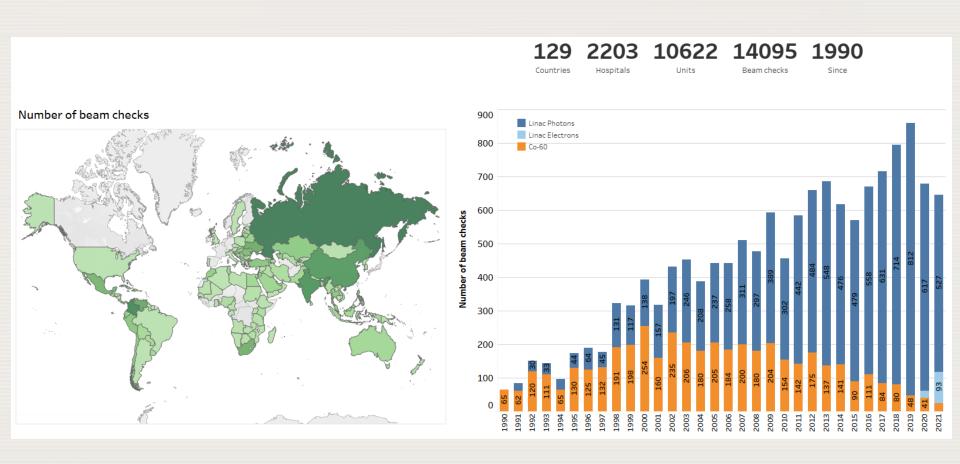
QUATRO missions

- QUATRO dosimetry kit contains DOL calibrated equipment as well as several sets of RPLDs for reference beam output check
- QUATRO standard dosimetry tests can be accompanied with 3D CRT or IMRT specific tests with anthropomorphic phantoms


Dose audits for radiotherapy centres

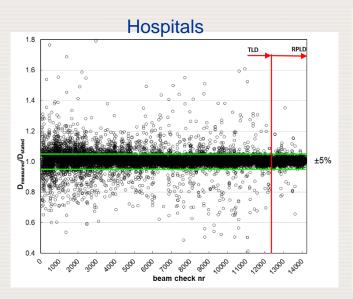
How is the audit carried out?

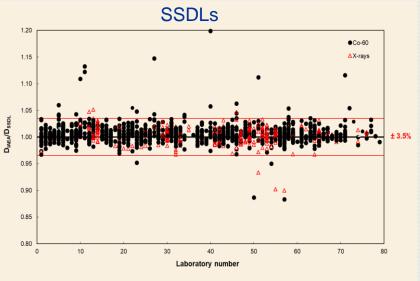
Radio-photoluminescence dosimeters are sent to radiotherapy centres for irradiation to verify the beam output used for patients' treatments.



Dose audit service:

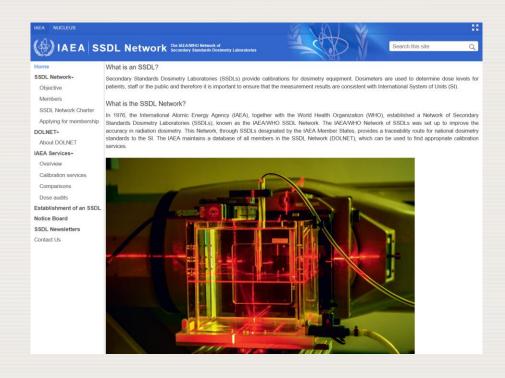
- 53 years of the IAEA/WHO postal dose audits (1969–2022)
- >16000 beam checks
- ~2500 radiotherapy centres in 140 Member States


Number of beam checks in hospitals

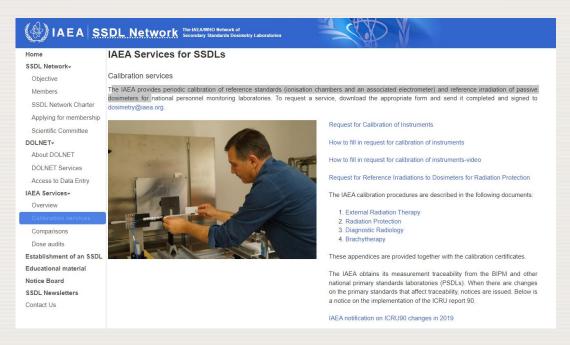


Dosimetry audits for hospitals and SSDLs

- RPLD-based: reusable, low fading, low volume averaging
- 10 audit runs per year (every month except for January and July)
- Photon beams only
- TRS 398 reference conditions

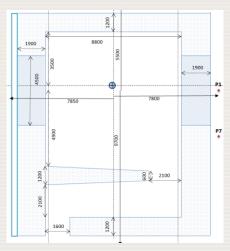


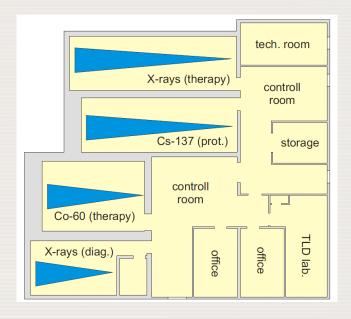
Comparison services provided to SSDLs


- Required in SSDL Charter
- Services cover
 Therapy, Protection, Diagnostics, Brachytherapy
- Protocols were published
- Can be used as a supporting evidence for publishing CMCs in the BIPM KCDB

Calibration services provided to SSDLs

- The IAEA provides periodic calibration of reference standards (ionisation chambers and an associated electrometer) and reference irradiation of passive dosimeters for SSDLs
- Radiation therapy
- Radiation protection
- Diagnostics radiology
- HDR brachytherapy

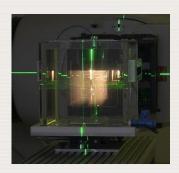

CMCs published in the BIPM KCDB



Calibration facilities

5 irradiation rooms (bunkers)

- Nordion Gammabeamm X200
- 4 ISOVOLT x-ray units
- Hopewell G-10 irradiator
- Saginova HDR afterloader
- Varian TrueBeam linac



(drawings not to scale)

Calibration facilities – radiation therapy

- Gammabeam X200
 - Co-60 (8 kCi)
 - Air Kerma
 - Absorbed Dose to water
- ISOVOLT Titan
 - 10 50 kV (CCRI low en.)
 - 100 250 kV (CCRI med. en.)

Calibration facilities – radiation protection

- Hopewell Designs G-10
 - Co-60, Cs-137
 - Air Kerma
 - Reference irradiations
- ISOVOLT Titan (G.E.) + Comet tubes
 - 40 300 kV (ISO4037 Narrow series)

Calibration facilities – diagnostic radiology

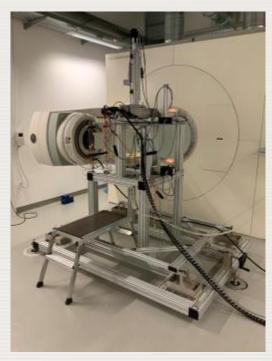
- ISOVOLT Titan (W tube, Mo tube)
 - 40 150 kV (RQR, RQA, RQT)
 - RQR/M, RQA/M, Mo+Rh, W+AI, W+Ag, W+Rh, W+Mo

The IAEA linear accelerator

- Installation and acceptance 2019
- Varian TrueBeam
 - photons
 - 6, 8, 10, 15, 18 MV
 - 2.5 FFF, 6 FFF, 10 FFF
 - electrons
 - 6, 9, 12, 15, 16, 18, 20, 22 MV



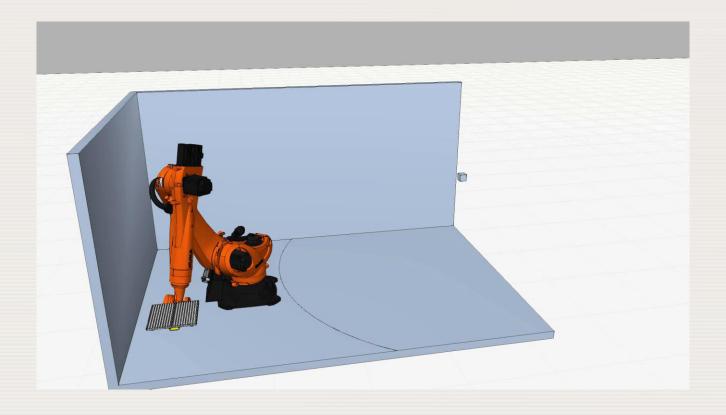
The IAEA linear accelerator use



Other linear accelerator calibration set-up

BIPM

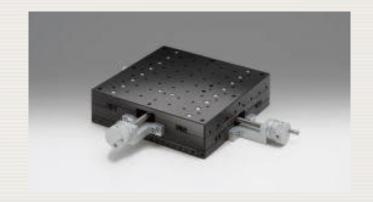
PTB


DTU, Denmark

Robotic Systems in Radiotherapy

Robotic calibration bench concept

Robotic concept selected to allow fast, easy and reproducible set-up



Robotic Calibration Bench System (RCBS)

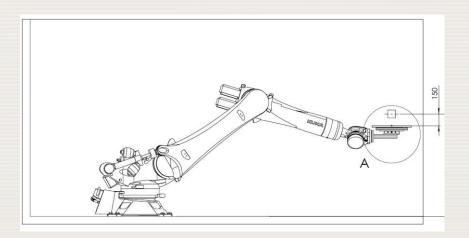
- Customized solution by B.E.C. GmbH
- KUKA KR150 R3100-2
 - KR150 R3100-2
 - KR C4 robot controller
 - KUKA smartPAD
- Positioning platform for water phantom
- Water phantom Minirad
- Newport linear stage UTS150-PP
- OptoSigma Cross Roller stage

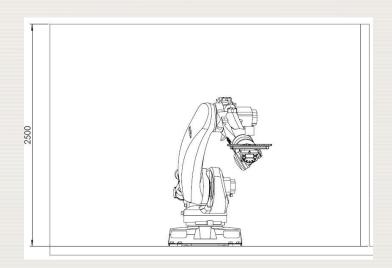
Calibration set-up

- Horizontal set-up with RCBS (Kuka)
- FCD: 100 cm, FS: 10 x 10 cm, $z_{ref} = 10 \text{ g/cm}^2$

Calibration set-up

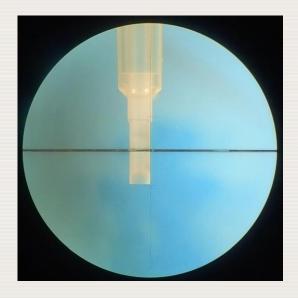
- Horizontal set-up with RCBS (Kuka)
- FCD: 100 cm, FS: 10 x 10 cm, $z_{ref} = 10 \text{ g/cm}^2$

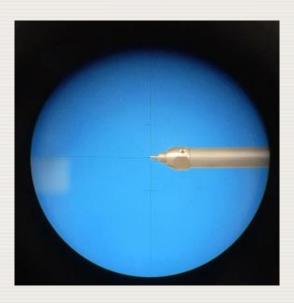

RCBS Commissioning



RCBS Commissioning - December 2019

- Test of short- and long-term robot stability (with load)
- Test of the robot positioning reproducibility
- Development and test of software application for the linear stage of the water phantom
- Development of the set-up procedure



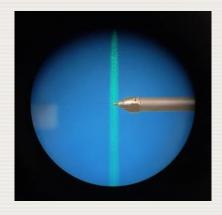


Long term stability of the robot

- Platform with the phantom positioned in the ISO center
- 50 kg load
- Telescope aligned with the well-defined surface (water-proof sleeve)
- Kept in position for 3 days
- No change of the position observed
- Platform stability better than 0.1 mm (resolution of the method)

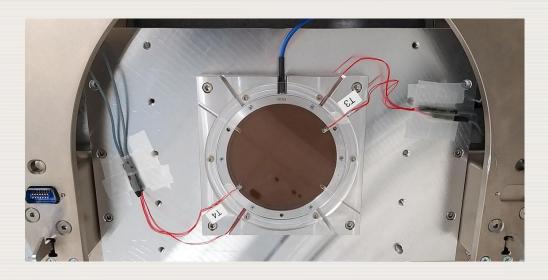
Positioning reproducibility

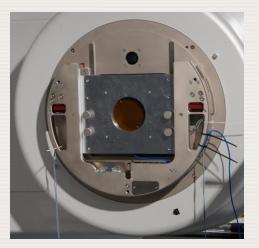
- Platform with the phantom positioned in the ISO center, 30 kg load
- Phantom aligned with the lasers
- Platform moved repeatedly 10x between
 - Parking position
 - loading position
 - ISO center position

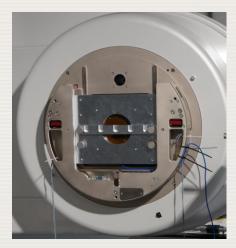


Positioning reproducibility

- Platform with the phantom positioned in the ISO center, 30 kg load
- Phantom aligned with the lasers
- Platform moved repeatedly between
 - Parking position
 - loading position
 - Isocenter position
- By visual check reproducibility of the alignment with lasers <0.5 mm
- Reproducibility by micrometer (water-proof sleeve surface) <0.1 mm

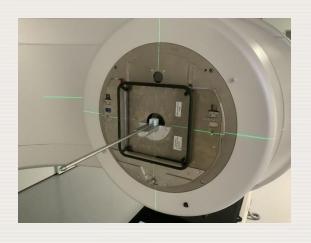


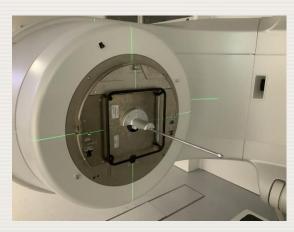


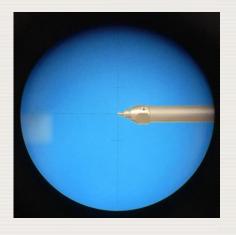


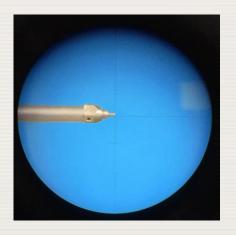
Transmission monitor PTW-7862 & thermistors

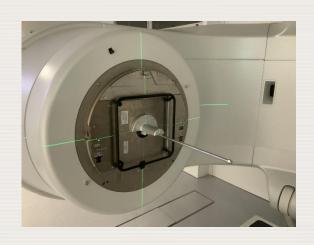
- PTW-7862
- 4 Ahlborn NTC thermistors

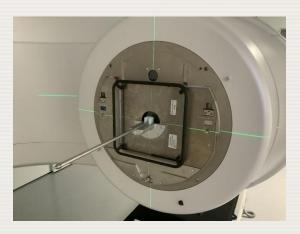


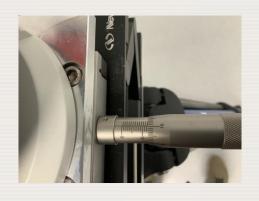




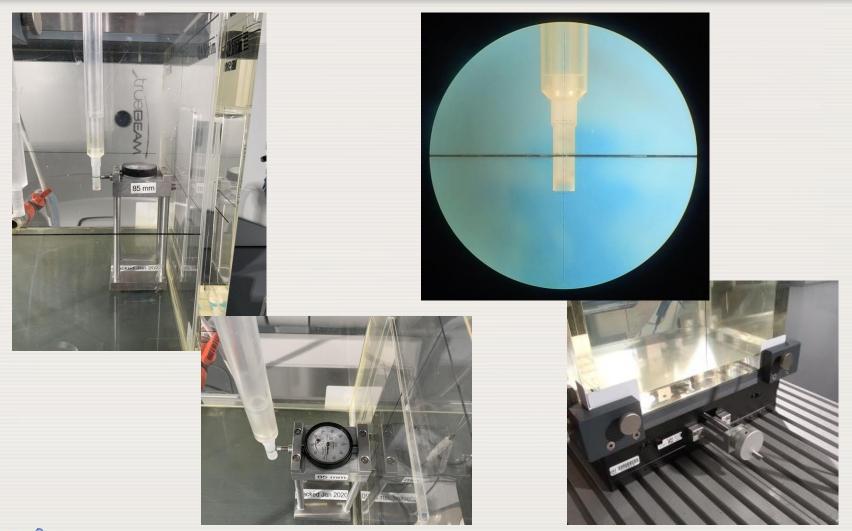

Set-up procedure - determination of the Isocenter

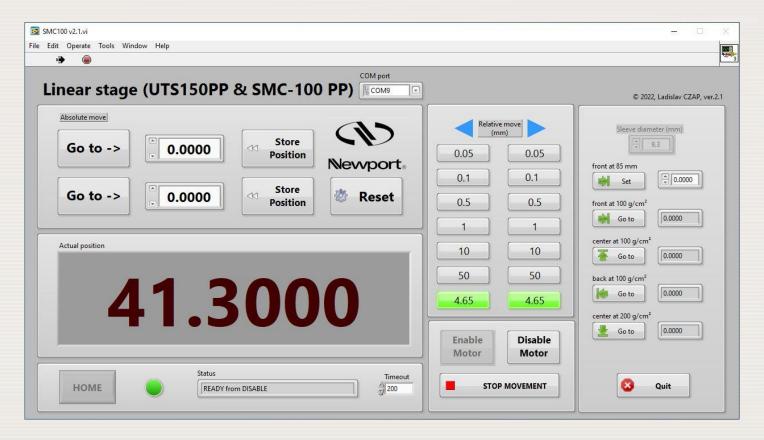






Set-up procedure - determination of the Isocenter




Set-up procedure - Chamber positioning at z_{ref}

Software application for Newport linear stage

Developed and tested (Labview platform)

IAEA chambers calibrated

- The IAEA ionization chambers calibrated by the BIPM (Elekta)
- FC-65G (#1551)
 NE-2571 (#3765, #3204)

• Co-60 (TPR: 0.570)

• 6 MV TPR: 0.686

10 MV TPR: 0.733

18 MV TPR: 0.774

• $N_{D,w} u_c \sim 0.42\% (k=1)$

Validated by comparison (KRISS, PTB) CMC to be published in KCDB

for the study and calibration in megavoltage x-rays of the ionization chamber NE 2571, serial number 3765, of the INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA), Vienna (No previous BIPM calibration)

CERTIFICATE

The ionization chamber NE ENERGY AGENCY (IAEA), I: Mesures (BIPM) in terms o was received on 02 July 20. C. Kessler and P. Roger and

The results of the study are and 101.325 kPa. The uncer

Radiation quality / MV
6
10
18

Information on the conditio of absorbed dose to water a 2021/xx (in preparation). D CERTIFICATE

for the study and calibration in megavoltage x-rays of the ionization chamber FC65G, serial number 1551, of the INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA), Vienna (No previous BIPM calibration)

The ionization chamber FC65G, serial number 1551, of the INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA), has been calibrated by the Bureau International des Poids et Mesures (PIDM) in terms of place held des

(BIPM) in terms of absorbed dereceived on 02 July 2020. The r C. Kessler and P. Roger and ver

The results of the study are shot and 101.325 kPa. The uncertain

Radiation quality / MV	
6	
10	
18	

Information on the conditions o of absorbed dose to water and a 2021/xx (in preparation). Detail

CERTIFICATE

for the study and calibration in megavoltage x-rays of the ionization chamber NE 2571, serial number 3204, of the INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA), Vienna (No previous BIPM calibration)

The ionization chamber NE 2571, serial number 3204, of the INTERNATIONAL ATOMIC ENERGY AGENCY (IAEA), has been calibrated by the Bureau International des Poids et Mesures (BIPM) in terms of absorbed dose to water in megavoltage x-rays. The instrument was received on 02 July 2020. The measurements were carried out during August 2020 by C. Kessler and P. Roger and verified by D. Burns.

The results of the study are shown below. The calibration coefficients N_{Dw} are given at 20 °C and 101.325 kPa. The uncertainties u_c represent the combined standard uncertainties.

Radiation quality / MV	TPR _{20,10}	$N_{D,w}$ / Gy μ C ⁻¹	<i>u</i> _c / Gy μC ⁻¹
6	0.686	44.76	0.19
10	0.733	44.48	0.19
18	0.774	43.96	0.18

Information on the conditions of measurement at the BIPM, on the determination of the rates of absorbed dose to water and an analysis of the uncertainties are given in Rapport BIPM.

2021/xx (in preparation). Details concerning the calibration uncertainties are given in Table 1.

Thank you

