4D Monte Carlo simulation to assess the impact of respiratory motion during radiation therapy

Emily Heath Associate Professor, Physics Carleton University Ottawa, ON

Outline

- Motion in radiation therapy
- Modeling dosimetric impact of motion
- 4D Monte Carlo simulation
- Experimental validation
- Needs and future work

Motion in radiation therapy

- Respiratory motion (thorax, abdomen)
- Digestion, bladder filling (pelvis)
- Motion characteristics are patient-specific

Seppenwoolde et al., International Journal of Radiation Oncology*Biology*Physics, 53(4), 2002.

Willoughby et al., International Journal of Radiation Oncology*Biology*Physics, 65(2), 2006.

Motion management techniques

4D imaging for individual patient motion assessment

Tscanner CT Controller Respiration X-Ray On Images Signal Signal CT Image Sorting Program Peak Mid Peak Mid Exhale Inhale Inhale Exhale

Treatment planning margins (motion encompassing or probabilistic)

Vedam et al Phys. Med. Biol. 48, 2003.

Wolthaus et al., International Journal of Radiation Oncology*Biology*Physics, 70(4), 2008

Motion management techniques

Breath hold

b Representative patient's RPM trace

Abdominal compression

Mampuya et al., Med. Phys. 40(9), 2013.

Ono et al. Radiat Oncol 16(49), 2021.

Motion management techniques

Keall et al., Med. Phys. 33, 2006.

https://cyberknife.com/cyberknife-technology/

Need for 4D dose calculation

- Prospective comparing motion management methods (resource allocation)
- Retrospective quality assurance of patient dose delivery
- Real-time real-time motion adapted radiation therapy

Modeling dosimetric impact of motion

• Blurring of the dose distribution

Dose/fluence convolution

- Localized dose deformations at interfaces between tissues of different densities (breakdown of spatial invariance assumption -> important for charged particles)
- Interplay effects for dynamic beam delivery

Modeling dosimetric impact of motion

• Blurring of the dose distribution

 Localized dose deformations at interfaces between tissues of different densities

> Calculate the dose delivered on multiple anatomical instances

• Interplay effects for dynamic beam delivery

Cumulative dose on Reference Geometry

Dose mapping

- Tracking dose to tissue elements whose voxel coordinates are changing
- Requires a geometrical mapping between reference and target geometries

Energy conservation in dose mapping

- Dose mapping does not conserve the deposited energy
- Two energy-conserving methods:

Energy mapping

Siebers and Zhong Med. Phys., 2008

Heath and Seuntjens, Med. Phys. 33(2), 2006.

Deforming voxels implementation

- Apply deformations to voxel nodes
- 2 geometries investigated: dodecahedrons (defDOSXYZnrc) and tetrahedrons (defVMC++)

Reference voxel + deformation vectors

Dodecahedron

Tetrahedral element

Computational efficiency comparison

Test case	Calculation	Efficiency (1/s)	Ratio
Rectangular Phantom	VMC++ XYZ	9985	-
	VMC++ defVox	1986	0.20
	VMC++ defTetra	5115	0.51
Lung Patient (Exhale-Inhale)	VMC++ XYZ	667	-
	VMC++ defVox	112	0.17
	VMC++ defTetra	190	0.28

Computational
$$\varepsilon = \frac{1}{\sigma^2 T}$$

Modeling dosimetric impact of motion

• Blurring of the dose distribution

- Localized dose deformations at interfaces between tissues of different densities (breakdown of spatial invariance assumption)
 Calculate the dose
 - delivered on multiple anatomical instances
- Interplay effects for dynamic beam delivery

Correlate sub-beam delivery to current anatomical state

Requirements:

- Delivery log files
- Synchronization with respiratory trace

Jensen et al, Phys. Med. Biol. 57, 2012

Position probability sampling approach

- Sample geometry for each incident particle from cumulative probability distributions
- Synchronization of beam and patient states requires 'time stamping' incident particles

Film BEAMnrc/DOSXYZnrc Source 20

Courtesy of Tony Teke, BC Cancer Agency

4DMC simulation workflow

Sample respiratory state from motion trace synchronized to treatment delivery

4DMC simulation workflow

- Look up deformations for current respiratory state
- Deform voxels and adjust density (mass is conserved)
- Transports particle through deformed dose grid and score energy deposition

Validation: Deformable lung phantom

Gholampourkashi et al., European Journal of Medical Physics, 2020.

RadPos 4D dosimetry system

- Developed with Best Medical Canada
- Micro-mosfet detector + EM position sensor (10 Hz)

Deformable image registration

Before registration

After registration

- Registered CT images of phantom in uncompressed and compressed states
- Velocity AI 3.2.0 (Varian Medical Systems) structure-guided multipass registration algorithm
- Tumour and beads used to guide DIR

DIR accuracy assessment

Registration Error (mm) assessed from beads

A/P	0.5 ± 0.3
L/R	0.4 ± 0.3
S/I	0.8 ± 0.5
3D	1.2 ± 0.4

Deformation vectors must be continuous!

Deformed - Target

Jacobian map (local volume changes)

Motion modeling

MU Index determines a displacement vector scaling factor based on normalized motion trace

Normalized RADPOS trace

Exhale-Inhale Deformation vectors

Scaled vectors applied to voxel

Experimental validation – VMAT plan

Planned dose distribution (Monaco)

Deformable gel dosimeter

Polymer gel dosimeter read out with x-ray CT

Vacuum-sealed LDPE bag

Wax beads

(a) (b) Maynard et al., Phys. Med. Biol. 63, 2018

Piston + stepper motor for gel compression

Maynard et al., Biomed. Phys. Eng. Express 6, 2020.

Experiment and simulations

Results: Gel vs. Simulations

TPS Measured defDOSXYZ (compressed) (uncompressed) (uncompressed)

Maynard et al., Biomed. Phys. Eng. Express 6, 2020.

Dose profiles along Z (compression)

Maynard et al., Biomed. Phys. Eng. Express 6, 2020.

Better agreement close to wax beads

Average TRE from wax beads = 1.1 ± 0.6 mm

Future work: patient dose reconstruction

31

Needs/Challenges

- 3D deformable dosimeters are desirable for validation of 4DMC simulations
- Need to be able to measure motion as well as dose
- Verification of patient dose reconstruction role for in-vivo dosimetry?

Acknowledgements

- Gel dosimetry: M. Hilts and A. Jirasek (UBC Okanagan)
- RADPOS: J. Cygler (Ottawa Hospital Cancer Centre)
- BC Cancer Agency: T. Popescu and T. Teke
- Students: S. Gholampourkashi (Carleton) and E. Maynard (University of Victoria)
- Funding:

Thank-you!

Carleton Laboratory for Radiotherapy Physics

