

Evaluation of GEANT4 Monte Carlo platform for absorbed dose calculation using alpha-emitting radionuclides

INTRODUCTION

Targeted radionuclide therapy (TRT) is a systemic therapy based on radiopharmaceuticals that are directly injected into the patient's bloodstream.¹ TRT with alpha particles leverages the high linear energy transfer (LET) and short range of alpha particles in tissue when compared to beta particles. Dosimetry in TRT involves the calculation of absorbed dose or microdosimetric quantities, such as lineal or specific energy, using computational methods that employ platforms with distinct transport physics, nuclear decay data, and interaction cross-section data.^{2,3} Therefore, there is a need to generate experimental data that can be used to validate the various existing dose calculation platforms. Monte Carlo (MC) codes, such as GEANT4, are often employed for dosimetric calculations in TRT. Hence, the purpose of this work was to use an extrapolation ionization chamber (IC) to measure absorbed dose to air from alpha-emitting radionuclides to experimentally validate the GEANT4 MC code. The comparison of experimentally-measured and MC-calculated absorbed dose to air was performed using a pure alpha emitter ie. 210 Po.

METHODS & **MATERIALS**

The figure below (not to scale) illustrates the cylindrical geometrical setup chosen in this work. The absorbed dose to air per unit radioactivity at each air gap can be measured by

$$\dot{D}_{air} = \frac{1}{A_o} \frac{\left(\frac{W}{e}\right)_{air}}{\rho_o \pi r^2} \frac{I}{l} \left(k_{pol} k_{recom} k_{TP} k_{elec}\right)$$

where A_o is the radioactivity of the alpha-emitting radionuclide, ρ_o is the air density at standard temperature and pressure, r is the radius of the cylindrical air cavity, $\left(\frac{\overline{W}}{e}\right)_{air}$ is the mean energy required to liberate an ion pair in dry air, I is the ionization current, and l is the air gap between the collector and source surfaces.

 k_{pol} is the polarity correction that accounts for the difference in signal due to the polarity of the applied bias

$$k_{pol} = \left| \frac{Q^+ - Q^-}{2Q^-} \right|$$

where Q^+ and Q^- are the positive and negative charges, respectively, collected by the IC. k_{TP} is the temperature and pressure correction that accounts for the difference in the mass of the air cavity due to non-standard temperature and pressure

$$k_{TP} = \frac{273.2 + T}{273.2 + 22} \times \frac{101.33}{P}$$

where T is the temperature in degrees Celsius and P is the pressure in kPa. k_{elec} is the electrometer correction that converts the displayed current or charge values to the true values.

 k_{recom} is the recombination correction X-Axis that corrects for the incomplete signal collection due to recombination effects

$$k_{recom} = \frac{Q_{sat}}{Q}$$
$$\frac{1}{Q} = \left(\frac{1}{Q_{sat}} + \frac{\alpha}{V} + \frac{\beta}{V^2}\right)e^{-\gamma V}$$

where Q_{sat} is the saturation charge, Qis the collected charge, and *V* is the applied voltage. The terms α , β , and γ are fitting parameters. The saturation charge was determined by fitting the experimental data to the above equation.

The PCB, shown here, was produced by electrochemical etching of conventional circuit board ma-(electroterials less nickel im-

mersion gold over FR-4 fiberglass). The collector was 4.5 mm in diameter and enclosed by a guard ring extending radially beyond the collector by at least 6.5 mm.

Minimizing the differential capacitance between isolated guard sectors aided in establishing parallelism between the source and collector.⁴ This technique is illustrated in the figure shown on the right. The absorbed dose to air was

AHTESHAM ULLAH KHAN, JEFF RADTKE, LARRY A DEWERD

Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison

CIRMS 30th Annual Meeting

a)

The polarity correction was found to be <0.3%. The figure below reports the recombination correction for various electric field strengths. The chosen field strength of 150 V/mm led to a correction of <0.5%. For electric field strengths >200 V/mm, the charge multiplication effects were observed. Contrarily, the recombination effects of up to 10% were noted for field strengths <10 V/mm.

measured using a ²¹⁰Po source with a 5.305 MeV alpha emission and 1.253 μCi activity.

Four independent measurement trials were conducted by measuring the ionization current in the air cavity. Voltages in the 1-200 V range were employed for a 0.3 mm air gap to calculate the k_{recom} correction. An electric field strength of 150 V/mm was selected and the air gap was varied between 0.3-0.525 mm in 0.025 mm increments. The charge was collected using a MAX4000 electrometer.

The experimental setup was modeled in GEANT4 v10.6 MC code.⁵ A physics list consisting of G4RadioactiveDecay, G4Decay, G4HadronElasticPhysicsHP, G4HadronPhysicsQGSP_BIC_HP,

G4IonElasticPhysics, G4IonQMDPhysics, and G4StoppingPhysics was employed. The atomic deexcitation was turned on and the production thresholds were set to 1 μ m. The internal GEANT4 decay data were used to simulate the ²¹⁰Po source. Absorbed dose to air per unit radioactivity was calculated for air gaps in the 0.3-0.525 mm range.

April 17 – 19, 2023

RESULTS

The figure below compares the MC-calculated absorbed dose to air per unit radioactivity with the experimental data. The measured absorbed dose was found to be lower than the MCcalculated dose for each independent air gap. A mean deviation of 4.20% was found between the two datasets. The combined uncertainty in the measured absorbed dose was compiled in Table 1.

a) 2.3×10^3 $2.25 \longrightarrow Fit$ $2.2 \longrightarrow 0.2$ $1.5 \longrightarrow 0.2$ $1.12 \longrightarrow 1/V (V^1)$ $1.12 \longrightarrow 1/V (V^1)$	11.5×10^{-7} 11.5×10^{-7} $11 - \oint$ $10.5 - \oint$ $10.5 - \oint$ $10.5 - \oint$ $10 - \oint$
1.06 – e	8
	$- \begin{array}{cccccccccccccccccccccccccccccccccccc$
10 ⁴ 10 ⁴ 10 ⁴ 10 ⁴ 10 ⁴	0.95 0.3 0.35 0.4 0.45 0.5 Air gap (mm)
Table 1: The total combined uncertain	ty in the measured dose for a 0.3 mm air gap.
Component of uncertainty	Type A (%) Type B (%))
Net current	0.13
Current repeatability	1.70
Air density correction	0.10
Recombination correction	0.10
Average energy per ion pair	0.20
Radioactivity	0.40
	1.00
Combined uncertainty $(k=1)$	2.04
Combined uncertainty (k=2)	4.08

CONCLUSIONS

Experimental validation of the GEANT4 MC code was performed using absorbed dose measurements for a pure alpha-emitting radionuclide. The polarity and recombination correction factors were found to be <0.5%. The MC results agreed with the experimental data within 5%. The overall combined uncertainty was found to be $\sim 2\%$ at k=1. The current repeatability between the four measurement trials was the largest contributor to the total uncertainty.

REFERENCES

- 1. Jadvar H. Targeted α -Therapy in Cancer Management: Synopsis of Preclinical and Clinical Studies. Cancer Biother Radiopharm. 2020;35(7):475-484.
- 2. Bolch WE, Eckerman KF, Sgouros G, Thomas SR. MIRD Pamphlet No. 21: A Generalized Schema for Radiopharmaceutical Dosimetry—Standardization
- of Nomenclature. J Nucl Med. 2009;50(3):477-484. 3. Bertolet A, Cortés-Giraldo MA, Carabe-Fernandeza A. An Analytical Microdosimetric Model for Radioimmunotherapeutic Alpha Emitters. Radiat Res.
- 2020;194(4).
- 4. Heerens WC. Application of capacitance techniques in sensor design. J Phys E. 1986;19(11):897-906. 5. Agostinelli S, Allison J, Amako K, et al. GEANT4 - A simulation toolkit. Nucl Instruments Methods Phys Res Sect A Accel Spectrometers, Detect Assoc Equip. 2003;506(3):250-303.

