Evaluation of GEANT4 Monte Carlo platform for absorbed dose calculation using alpha-emitting radionuclides CIRMS 2023 Annual Meeting

Motivation:

- Lack of standardized methods that convert time-integrated activity to absorbed dose
- Experimental data are needed to validate dose calculation platforms

Results:

- GEANT4-calculated absorbed dose to air per unit activity (²¹⁰Po source)
- Experimental data agreed with Monte Carlo within 5%

Component of uncertainty	Type A (%)	Type B (%)
Net current	0.13	
Current repeatability	1.70	
Air density correction		0.10
Recombination correction		0.10
Average energy per ion pair		0.20
Air collection volume		0.40
Radioactivity		1.00
Combined uncertainty (k=1)	2.04	
Combined uncertainty (k=2)	4.08	

11.5 ┌^{×10⁻⁷} MC 11 φ ∮ × ∮ ∮ φ φ 8.5 0.5 0.35 0.45 0.3 0.4 Air gap (mm)

Ash Khan (akhan49@wisc.edu)

Approach:

 Printed circuit board (PCB) ion chamber used to measure absorbed dose to air per unit activity

$$\dot{D}_{air}(l) = \frac{1}{A_o} \frac{\left(\frac{\overline{W}}{e}\right)_{air} l}{\rho_o \pi r^2 l} \left(k_{pol} k_{recom} k_{TP} k_{elec}\right)$$

 $\dot{D}_{\rm air}$: Absorbed dose to air

 A_o : Radioactivity

 $\left(\frac{W}{e}\right)_{air}$: Mean energy to create an ion pair

 ho_o : Air density at standard pressure and temperature

r: Radius of the cavity

I: Ionization current

l: Air gap between the source and the collector