CDC'S Rapid Radionuclide Screen – Improvements, New Methods, and Plans for the Future

Robert L. Jones, PhD

Inorganic and Radiation Analytical Toxicology Branch

April 17, 2018

CIRMS 2018 Meeting

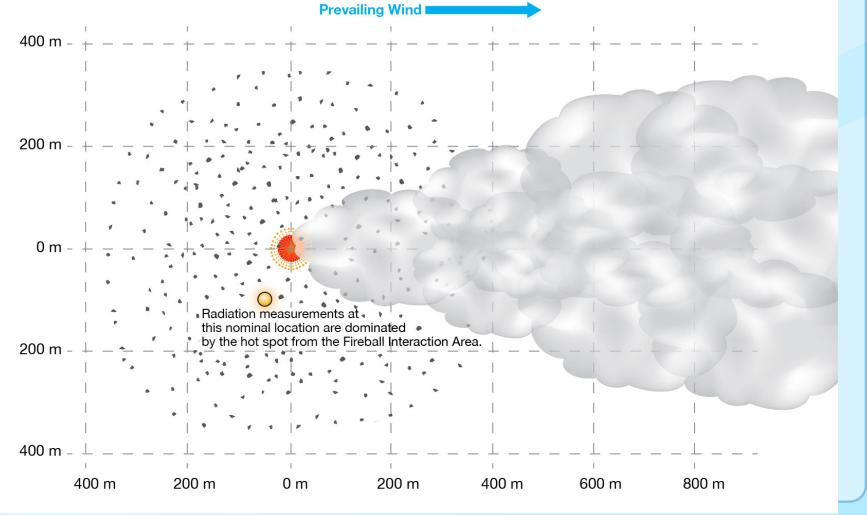
National Center for Environmental Health

Division of Laboratory Sciences

The Boston Marathon 2013

What if,

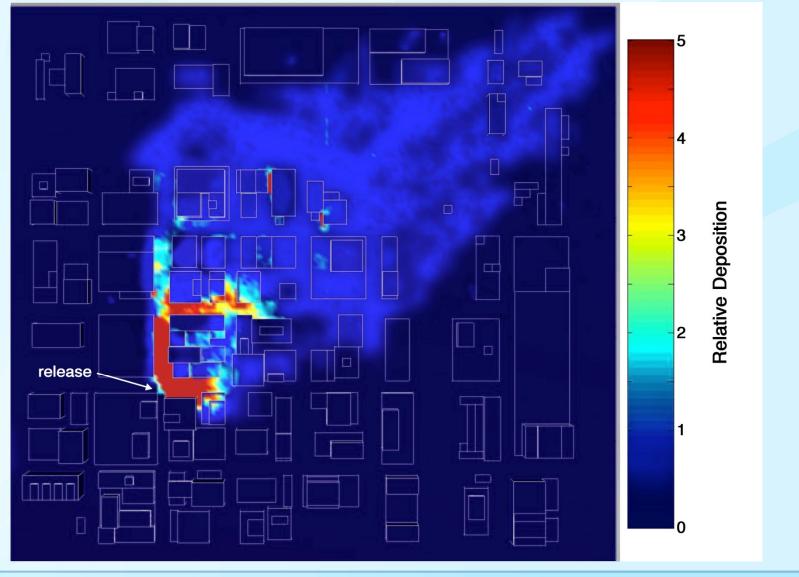
It had been an RDD ("Dirty Bomb")?


Dispersal Pattern

Fireball Interaction Area (< 100 µm, about 5% of material in fireball)

Large Particles (≈ 100 - 500 µm)

Ballistic Fragments (> 1 cm)

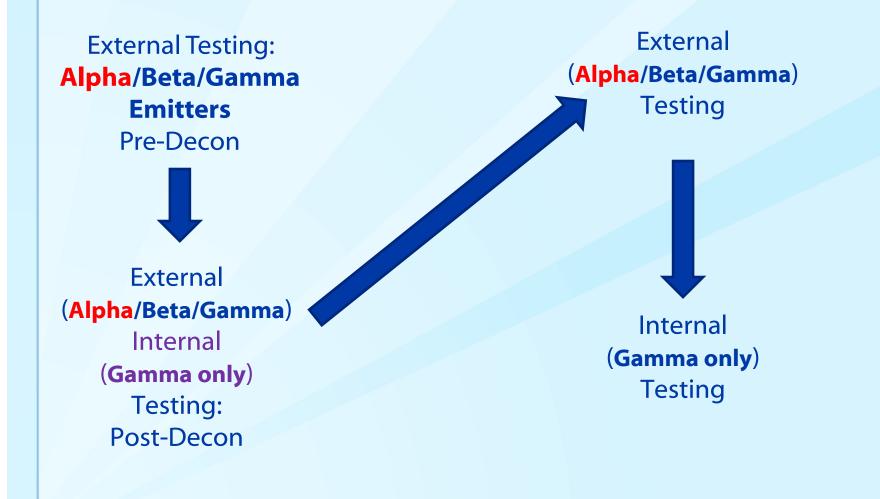

Downwind Fallout (small particles)

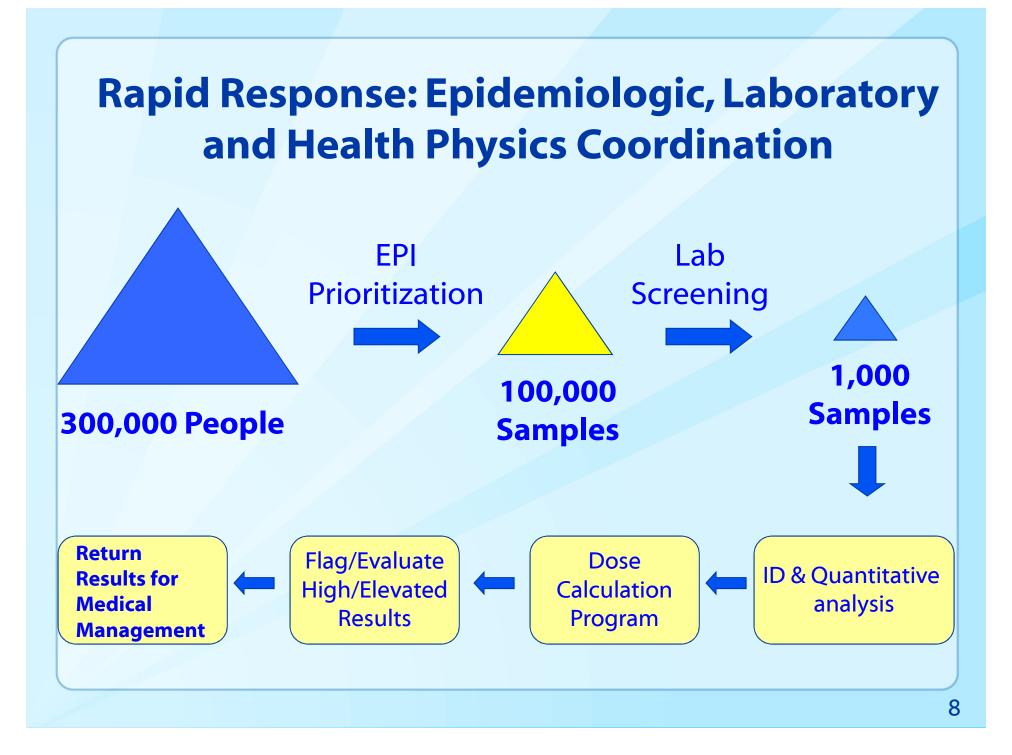
Musolino, et.al., Health Physics, 2013, Volume 105, pages 65-73.

Michael Brown, LANL

Was it a Widespread Dispersal?

Reproduced with permission from Dr. Michael Brown, LANL


Examples of Mass Screening Radiation Specific


- 1986 Chernobyl, Incident >300,000 screened
- 1987 Goiania, Incident ~112,000 screened
- 1999 Japan, Tokaimura Incident >74,600 screened
- 2011 Japan, Fukushima incident >244,000 screened

Examples of Radiation Poisonings (Micro RDD)

- 1957 Frankfurt, Germany Thallium-204
- 1990 Canada, Tritium (H-)3
- 1994-1995 Taiwan, Phosphorus-32
- 1995 NIH, Phosphorus-32
- 1995 MIT, Phosphorus-32
- 1996 Long Island, NY, Radium-226
- 1999 U. of CA, Phosphorus-32
- 2009 India, Tritium (H-3)
- 2006 London, Polonium-210

Examples of Contamination Triage Testing for Alpha Emitters

Rapid Radionuclide Bioassay analytical methods: traditional versus new methods

	"Traditional" Radionuclide methods	New "Rapid" methods: CDC
Time to first analytical results for 40 samples	About 3-6 days	Less than 24 <i>hours</i>
Sample Requirements	24 hour collection	" <i>spot</i> " collection
Sample Size Requirement	1 -2 L	70 mL
Number of radionuclides with validated clinical methods	Limited to contract with Bioassay lab	22 + "fission products" (14 current)
Sample throughput	10-20 samples per day	250 -3000 samples per day
CLIA Certified Methods	no	yes
Scalable for "Surge Capacity"	minimal	yes

The Clinical Decision Guide (CDG),

The Clinical Decision Guide (CDG), a new operational quantity, is defined here to provide a measure that physicians can use when considering the need for medical treatment for internallydeposited radionuclides or as a screening level indicating the need for a more detailed investigation of tissue-specific absorbed doses over different time periods. For radionuclides other than isotopes of iodine, the CDG is the maximum, once**in-a lifetime** intake of a radionuclide that represents:

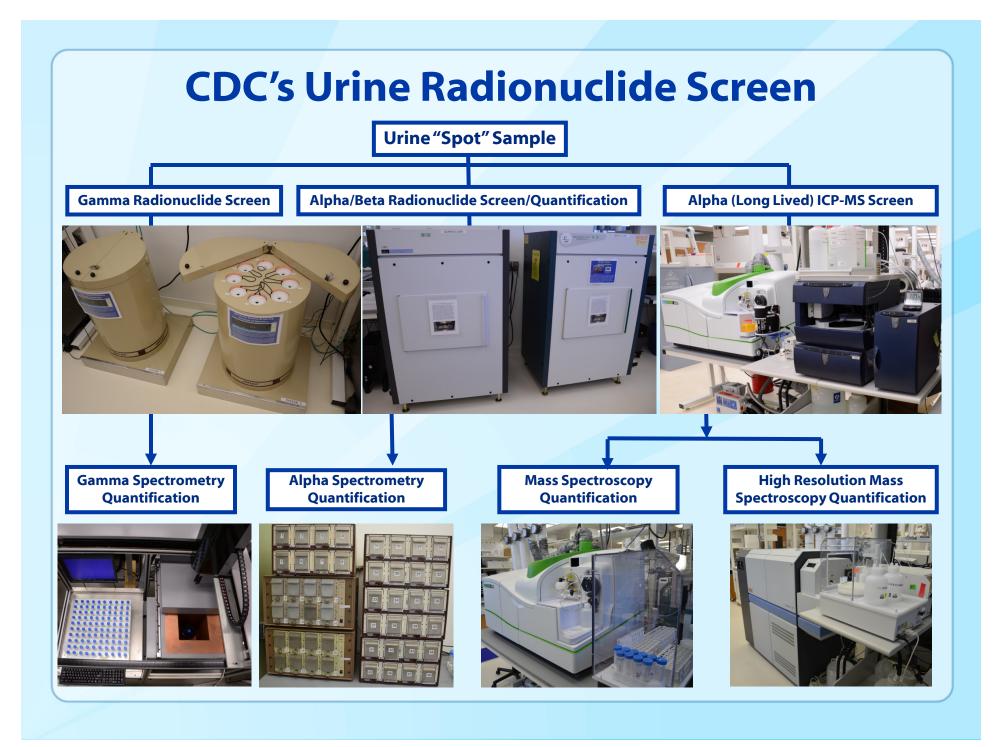
NCRP Report 161: Management of Persons Contaminated with Radionuclides: Handbook

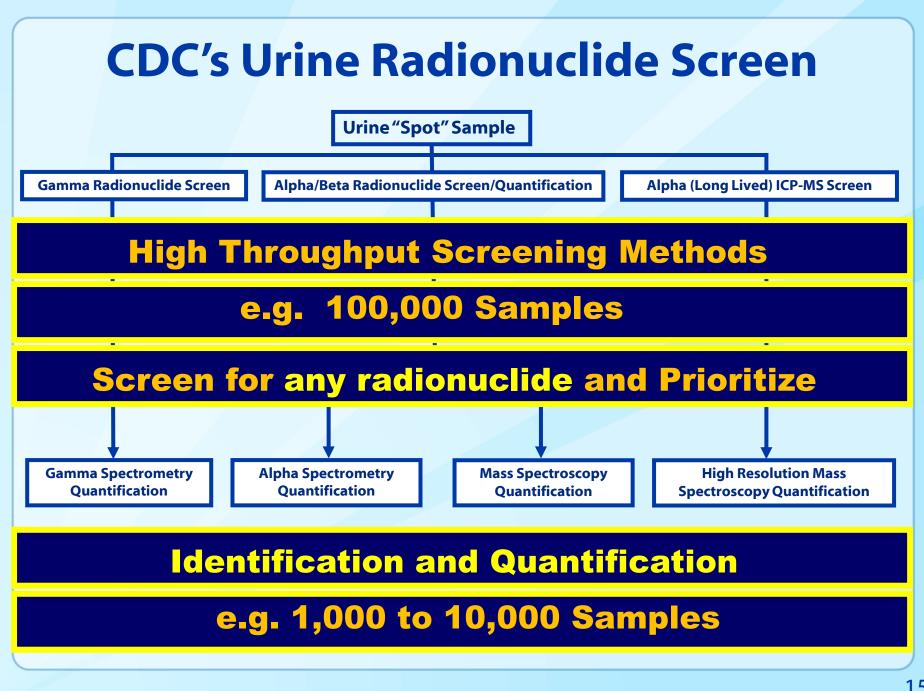
Clinical Decision Guide (Adult)

Nuclide	Route	Class /chem	AMAD	ALI (Bq)	CDG (Bq)	(Bq/d)	(Bq/ml)	(Bq/L)
Co-60	Inhalation	Μ	1 um	7.40E+06		1.23E+05	8.54E+01	8.54E+04
Co-60	Inhalation	М	5 um		3.50E+07	7.00E+05	4.86E+02	4.86E+05
Sr-90	Inhalation	F	1 um	1.48E+05		3.41E+03	2.37E+00	2.37E+03
Sr-90	Inhalation	F	5 um		8.30E+06	5.64E+05	3.92E+02	3.92E+05
Sr-90	Ingestion	n/a	n/a	1.11E+06		4.96E+04	3.45E+01	3.45E+04
Sr-90	Ingestion	n/a	n/a		8.90E+06	4.98E+05	3.46E+02	3.46E+05
Cs-137	Inhalation	F	1 um	7.40E+06		4.21E+04	2.92E+01	2.92E+04
Cs-137	Inhalation	F	5 um		5.80E+07	1.28E+06	8.86E+02	8.86E+05
Cs-137	Ingestion	n/a	n/a	3.70E+06	0.002101	8.35E+04	5.80E+01	5.80E+04
Cs-137	Ingestion	n/a	n/a	0.102100	2.80E+07		8.78E+02	
				0 00E - 00				
Pu-239	Inhalation	M	1 um -	2.22E+02		3.61E-02	2.51E-05	2.51E-02
Pu-239	Inhalation	М	5 um Adult.	1 day Po	7.60E+03 st exposi	1.60E+00	1.11E-03	1.11E+00

Bioassay: Key Issue

Detection of Internal Contamination


Radionuclides	Urine bioassay detection	Primary radiation detection				
Uranium (²³⁵ U, ²³⁸ U), Thorium	yes					
Strontium, Plutonium (²³⁸ Pu, ²³⁹ Pu)) yes	alpha and				
Americium, Californium, Neptuniun	n, yes	beta				
Phosphorus, Curium, Polonium	yes					
Cesium, Cobalt (⁵⁷ Co, ⁶⁰ Co), Radium	n yes					
lodine (¹²⁵ I, ¹³¹ I), Technetium-99m	yes	Gamma				
Selenium, Molybdenum, Iridium	yes	rays				
Radionuclides of concern can be found at: www.energy.gov/media/RDDRPTF14MAYa.pdfc Internal radiation screening via hand held detectors or portals is only applicable for gamma emitting radionuclides. The "Grand Rounds" presentation and slides can be found at: www.cdc.gov/about/grand-rounds/archives/2010/03-March.htm ¹						


CDC's - Bioassay Testing

- Capability: Rapid screening, identification and quantitative assessment of <u>internal</u> incorporation of radionuclides to quantify exposure or dose ("health risk")
- **Capacity**: ID and Quantify approximately 300 samples per day

Dose Range:

- 0.0001 to >2 Sieverts (Sv) analytical sensitivity
- Medical Treatment Threshold
 - 0.05 Sv Children and Pregnant Women,
 - 0.2 Sv for the general population (**CDG**)
- Provide initial identification of a possible poisoning (e.g. ²¹⁰Po)
- Assist with the EPI investigation

CDC Radiation Lab Updates

Analytical methods for 14 of the 22 Priority radionuclides have been developed **Refining and enhancing current methods** (e.g. Sr-90, Pu-239) **Additional methods being developed for:** Np-237 via HR-ICP-MS and Q-ICP-MS Ra-226 via ICP-MS-QQQ Se-75, I-131 & I-125 via Gamma Spec. (HPGe) Po-210, Cf-252 & Cm-242 via Alpha Spec.

Radiological Incident Impact

- Loss of life
- Acute radiation exposure
- Potential future cancer risk
- Psychosocial issues
- Economic impact, including area denial (due to contamination)
- Increased anxiety among citizens

Summary

- Radiation Laboratory Methods (bioassay): rapidly identify and quantify <u>specific</u> radionuclides in people potentially contaminated in a radiological or nuclear event.
- Provides timely and critical information for effective medical management of individuals by assessing risk for medical management and follow-up.
- Provides information for population monitoring (populations and population sub-groups) by determining the level of internal contamination/exposure.
- Provides "negative" results for people, who think that they may be contaminated but are not truly contaminated, thereby relieving the stress on the public health system and medical infrastructure (e.g. limited SNS resources).

Acknowledgements

- Kathleen Caldwell, PhD
- Olga Piraner, PhD
- Ge Xiao, PhD
- Jon Button, PhD
- Carl Verdon, PhD
- Youngzhong Liu, PhD
- Supriyadi Sadi, Phd

- Shannon Sullivan, MS
- Rebecca Hunt, MS
- Kameswara Voleti, PhD
- David Saunders, PhD
- Los Alamos National Labs
- Sandia National Labs
- Savannah River National Labs
- Argonne National Labs
- FDA, EPA, NIST, BOD, DOE

Questions

and

Discussions

Thank you

For more information please contact Centers for Disease Control and Prevention

1600 Clifton Road NE, Atlanta, GA 30333 Telephone: 1-800-CDC-INFO (232-4636)/TTY: 1-888-232-6348 E-mail: <u>cdcinfo@cdc.gov</u> Web: <u>http://www.cdc.gov</u>

For more information please contact Centers for Disease Control and Prevention

1600 Clifton Road NE, Atlanta, GA 30333 Telephone, 1-800-CDC-INFO (232-4636)/TTY: 1-888-232-6348 E-mail: cdcinfo@cdc.gov Web: www.cdc.gov

"The findings and conclusions in this presentation have not been formally disseminated by the Centers for Disease Control and Prevention and should not be construed to represent any agency determination or policy. Use of trade names is for identification only and does not imply endorsement by the Centers for Disease Control and Prevention, the Public Health Service, or the U.S. Department of Health and Human Services."

> National Center for Environmental Health Division of Laboratory Science

21

Contact

Robert L. Jones, PhD

Centers for Disease Control and Prevention 4770 Buford Hwy Mailstop F-50 Atlanta, GA 30341-3724 RLJones@cdc.gov

"The findings and conclusions in this presentation have not been formally disseminated by the Centers for Disease Control and Prevention and should not be construed to represent any agency determination or policy.

Use of trade names is for identification only and does not imply endorsement by the Centers for Disease Control and Prevention, the Public Health Service, or the U.S. Department of Health and Human Services."

Backup Slides

Radiation Diagnostics

- Radiation Exposure: A person is "exposed" to radioactive materials through
 - gamma irritation (external only e.g. IND blast)
 - "exposure" to alpha, beta or gamma radiation from external or internal contamination (RDD or IND fallout).
- Radiation Contamination: A person is "contaminated" <u>internally</u> with <u>radioactive</u> <u>materials</u> via inhalation or ingestion.

Both "exposure" and "contamination" results in an exposure <u>dose</u>.

Radiation Diagnostics Tool Effectiveness vs. Type of

Type of Incident	Exposure (Biodosimetry)	Contamination (Bioassay)
Improvised Nuclear Device (IND)	Effective (shine)	Effective (fallout)
Nuclear Power Plant (NPP)	Limited	Effective (fallout)
Radiation Dispersal Device (RDD)	Limited	Effective
Radiation Exposure Device (RED)	Effective	Not useful

Biodosimetry determines a "past" radiation dose from an "exposure" incident. (HHS/BARDA Diagnostic test Development)

Bioassay determines "past, current and future" radiation doses from a "contamination" incident. (CDC Diagnostic test Development)

Examples of Mass Screening/Analysis

- 1987 Goiania ¹³⁷Cs 112,000 tests in ~ 3 Months
- 1995-1996 U.S. Methyl parathion 16,000 tests
- 2001-2002 U.S. Anthrax (clinical) 250,000 tests
- 2001-2002 U.S. Anthrax (environmental) 1,000,000
- 2005 NV Mercury exposure 280 tested
- 2006 London ²¹⁰Po 800 tested in ~ 6 weeks

Concerned Citizen Multiplier

- 1987 Goiania ¹³⁷Cs 50 treated / 112,000 screened
 - = 2240 "concerned citizen multiplier" (CCM)
- 1995-1996 U.S. Methyl parathion 16,000 CCM
- 2001-2002 U.S. Anthrax (clinical) 30 casualties or infected / 250,000 tests = 8,500 CCM
- 2005 NV Mercury exposure 1 contaminated /280 tested = 280 CCM
- 2006 London ²¹⁰Po –1 casualty / 800 tested = 800
 CCM