THE UNIVERSITY OF TEXAS MDAnderson Cancer Center

Making Cancer History[®]

Nanoscale radiation measurements in mixed radiation fields at the molecular level

Gabriel O. Sawakuchi, PhD, DABR Assistant Professor Department of Radiation Physics Division of Radiation Oncology Houston, Texas, USA gsawakuchi@mdanderson.org

www.mdanderson.org/sawakuchilab

Disclosures

Research funds: Elekta Inc.

High-energy mixed radiation fields

Space radiation environment

C-ion therapy

Apr 16, 2018 CIRMS

Particle therapy facilities

Apr 16, 2018 CIRMS

- Conformal dose distributions
- ✓ Lower integral dose
- ✓ Better sparing of organs at risk
- ✓ Potential to escalate the dose

- Linear energy transfer (LET): Energy transferred per unit length
- LET describes the spatial pattern of energy deposition
- Units: keV/µm or eV/nm

- Ionizing radiation induces DNA damage
- Low-LET
 - Sparsely ionizing: mostly indirect DNA damage via reactive oxygen species (ROS)
 - DNA damage depends on oxygen status of tumors
- High-LET
 - Densely ionizing: induces direct DNA damage
 - Less dependent on tumor hypoxia

- Types of DNA damage
 - Base damage
 - Single strand break
 - Double strand break
- Simple or clustered DNA damage
 Radiation predominantly produces clustered DNA damage

- Clustered DNA damage: two or more individual lesions within one or two helical turns of DNA
 - Clustered non-DSB
 - Clustered DSB
- Yield of DNA lesions

	DNA lesions (Gbp ⁻¹ Gy ⁻¹)			
	SSB	DSB	DSB cluster	
1 keV/µm low-LET	~170	~6	~0.1	
50 keV/µm high-LET	~150	~12-16	~0.3	

Friedland et al 2017, Sci Rep 7:45161

- Understand biophysical aspects of radiation to predict response
- Understand how LET is related to DNA damage, DNA repair and cell's fate

 No techniques are currently available to study early DNA damage response in therapeutic radiation beams

Live cell imaging in the beam line

McFadden et al 2016, IJROBP 96, 221

Time-Lapse Monitoring of DNA Damage Colocalized With Particle Tracks in Single Living Cells

Conor H. McFadden, MSc,* Timothy M. Hallacy, BSc,*^{,†} David B. Flint, BSc,*^{,‡} Dal A. Granville, PhD,[§] Aroumougame Asaithamby, PhD,^{||} Narayan Sahoo, PhD,* Mark S. Akselrod, PhD,[¶] and Gabriel O. Sawakuchi, PhD*^{,‡}

- Designed and constructed a portable confocal microscope
 - Live cell imaging
- Flexible configuration
- Can be shipped to any place
- Can be used in any beam line
 - horizontal beams
 - vertical beams

Connor McFadden Sr Research Engineer

Live cell imaging in the beam line

Genetically engineered cells that express a fluorescent probe tagged to a DNA repair protein

Asaithamby UTSW

Apr 16, 2018 CIRMS

Live cell imaging in the beam line

Live cell imaging in the beam line enables to monitor fast spatiotemporal behavior of DNA damage response and repair

C-ion particle spectrum is complex

C-ion particle spectrum is complex

C-ion particle spectrum is complex

- Measure radiation with submicrometer spatial resolution
- Measure LET or energy deposition of individual tracks in a mixed field
- Link radiation measurements with DNA damage response
- Separate individual DNA damage response according to radiation type

NOT EASY TASKS

Mark Akselrod Landauer, Inc.

Steffen Greilich DKFZ

Fluorescence nuclear track detector (FNTD)

- Biocompatible
- No chemical process
- Compatible with cell imaging

Apr 16, 2018 CIRMS

Fluorescence nuclear track detector (FNTD)

Apr 16, 2018 CIRMS

Fluorescence nuclear track detector (FNTD)

Excitation and emission bands for F2+(2Mg)-centers

Apr 16, 2018 CIRINS

Fluorescence nuclear track detector (FNTD)

- Reconstruction of confocal stacks allows 3D images of tracks
- Spatial resolution is limited by the method used to readout
 - Confocal microscopy is limited by diffraction
 - Super-resolution microscopy

Protons, ~65 MeV, ~1 keV/ μ m in H₂O

C-ions, ~160 MeV/u, ~20 keV/µm in H₂O

Apr 16, 2018 CIRMS

Gabriel Sawakuchi, MDACC

- Can cut into coverslips
- Biocompatible!

McFadden et al 2016, IJROBP 96, 221 Time-Lapse Monitoring of DNA Damage Colocalized With Particle Tracks in Single Living Cells

Conor H. McFadden, MSc,* Timothy M. Hallacy, BSc,*^{,†} David B. Flint, BSc,*^{,‡} Dal A. Granville, PhD,[§] Aroumougame Asaithamby, PhD,^{||} Narayan Sahoo, PhD,* Mark S. Akselrod, PhD,[¶] and Gabriel O. Sawakuchi, PhD*^{,‡}

Apr 16, 2018 CIRMS

Single strand breaks, HT1080-eGFP-XRCC1 + Protons ~1 keV/µm

Develop a technique to record particle tracks and early DNA damage response while on the beam line

	Live cell imaging		Confocal microscopy
enges	Nanoscale radiation measurements	-	Fluorescence nuclear track detectors (FNTD)
Chall	Co-localization of DNA damage and track traversals at the molecular level	-	Confocal + FNTDs

29

Final remarks

- We developed a technique for online co-localization of tracks with DNA damage that allows to investigate the effects of mixed field radiation in live cells at the molecular level
- Demonstrated that it is possible to assign foci to individual tracks with LET information
- We show that a few high-LET lesions may drive survival

Final remarks

Thank you! Questions? gsawakuchi@mdanderson.org

Sawakuchi Lab

Sharmistha Chakraborty, Research Scientist Scott Bright, Postdoc Conor McFadden, Sr Research Engineer David Flint, PhD Student David Yoon, RAII Sathvik Aithala, RAII Rachael Martin, Physics Resident

MD Anderson

David Grosshans Narayan Sahoo Radhe Mohan Simona Shaitelman Emma Holliday Cullen Taniguchi Sunil Krishnan Lei Li

External Collaborators

Asaithamby Aroumougame, UTSW Steffen Greilich, DKFZ Teruaki Konishi, NIRS Satoshi Kodaira, NIRS Yoshiya Furusawa, NIRS Mark Akselrod, Landauer Inc Joseph Duman, BCM Pavel Sumazin, BCM

The Sawakuchi Lab acknowledges funding from:

Seed grants in particle therapy, UTSWMC (PI: Sawakuchi) RP170040, IIRA/CPRIT (PI: Sawakuchi) Elekta Inc (PI: Sawakuchi) Radiation Oncology Seed Grant, MDACC (PI: Sawakuchi) RP160520, IIRA/CPRIT (PI: Sadek) CA208535-02, R01/NIH (PI: Grosshans) CA219667-01, R01/NIH (PI: Duman)

