Reference dosimetry protocols and their application in radiotherapy environments with strong magnetic fields. CIRMS 2018

Daniel O'Brien, PhD Global Product Support, Elekta

MRI-guided Radiotherapy

- New treatment modality that combines MR-imaging with radiotherapy linacs
- Introduces magnetic fields to the radiotherapy environment
- Current range from 0.35 T to 1.5 T

Standard Reference Dosimetry Protocols

3 | Focus where it matters

Formalism

Standard Reference Dosimetry Protocols

All major dosimetry protocols use some variation of the following formalisms

Direct Calibration
$$D_w^Q = M \cdot N_{D,w}^Q$$
 (e.g. NPL)

Corrected Calibration
$$D_w^Q = M \cdot N_{D,w}^{60} \cdot k_Q$$
 (e.g. AAPM, IAEA)

4 | Focus where it matters.

Beam Quality

Standard Reference Dosimetry Protocols

- Some measurable metric (or beam quality specifier) must be used to determine the radiation quality of the beam.
- Two most common beam quality specifiers are:
 - $\% dd(10)_x$ Used by AAPM TG-51 protocol

The percentage depth dose at 10 cm depth for a pure photon beam (*no electron contamination*). Must be measured at 100 cm SSD.

- TPR_{10}^{20} Used by IAEA TRS-398 protocol Ratio of the dose at isocenter at a depth of 20 cm to the dose at isocenter at a depth of 10 cm. Independent of SSD. Potential for the relationship with k_0 to change for FFF beams.

Beam Quality Correction

Standard Reference Dosimetry Protocols

AAPM TG-51

IAEA TRS-398

6 | Focus where it matters.

Complications in Magnetic Fields

7 | Focus where it matters

Lorentz Force

No Magnetic Field

1.5 T Magnetic Field

Electrons (in red) continue to scatter.

However, their trajectory in water/tissue is heavily influenced by the Lorentz force.

Note: Positrons (in blue) are deflected in the opposite direction

Electron Return Effect

1.5 T Magnetic Field

Beam Quality Determination

Complications in Magnetic Fields

Source to surface distance (SSD) restrictions due to the cryostat

Beam Quality Determination

Complications in Magnetic Fields

- Magnetic field alters the effective point of measurement of ionization chambers.
- Must be accounted for when measuring percentage depth doses (PDDs)

* O'Brien et al. (2018). "Relative dosimetry with an MR-linac: Response of ion chambers, diamond, and diode detectors for off-axis, depth dose, and output factor measurements" Med. Phys. 45(2), 884–897

Beam Quality Determination

Complications in Magnetic Fields

Magnetic field alters the depth dose distribution.

- Changes the value of the %dd(10)_x beam quality specifier
- *TPR*²⁰₁₀ effectively independent of magnetic field strength

Pure Photon Beam	d _{max}	% <i>dd</i> (10) _x	TPR_{10}^{20}
No magnetic field	1.85	71.4	0.697
1.5 T magnetic field	1.30	69.7	0.695

* O'Brien et al. (2016). "Reference dosimetry in magnetic fields: formalism and ionization chamber correction factors." Med. Phys. 43(8), 4915–4927

12 | Focus where it matters.

Air Gap Effect

Complications in Magnetic Fields

* (Adapted) Hackett et al. (2016). "Consequences of air around an ionization chamber : Are existing solid phantoms suitable for reference dosimetry on an MR-linac?" Med. Phys. 43(7), 3961-3968

* O'Brien et al. (2017). "Monte Carlo study of the chamber-phantom air gap effect in a magnetic field." Med. Phys. 44(7), 3830-3838

Calibration Phantoms

Complications in Magnetic Fields

* PTW Stationary Water Phantom

* Photo courtesy of Nikolas Marinos, Elekta

Ion Chamber Response

Complications in Magnetic Fields

* Agnew et al. (2017). "Quantification of static magnetic field effects on radiotherapy ionization chambers" Phys. Med. Biol. 62(5), 1731-1743

Adaptation Strategies

16 | Focus where it matters

Code of Practices?

Adaptation Strategies

Home > News + Events > News

New facility supports development of MRI-guided radiotherapy

A new electromagnet at the National Physical Laboratory's (NPL) Theratron radiation facility will enable research supporting MRI-guided radiotherapy - a state-of-the-art cancer treatment.

Radiotherapy treats cancer by focusing beams of ionising radiation on a tumour, killing cancerous cells by damaging their DNA. Radiation delivery must be tightly controlled to minimise damage to the surrounding healthy tissue. Typically, X-ray based techniques are used to image a patient immediately before treatment to direct the radiation. But tumours move and deform inside a patient's body with bodily functions such as breathing, and can shift and change in size over the course of treatment.

MRI-guided radiotherapy provides real-time images during a patient's treatment, and offers more detailed and higher contrast images for the identification of tumours and soft tissues. This boosts tumour targeting accuracy, reducing side-effects and increasing survival rates.

Currently untreatable cancers, such as kidney and pancreatic tumours, which can't be accurately tracked

FIRST WATER CALORIMETER MEASUREMENTS IN AN MRI-LINAC

A leap towards traceable dosimetry for MR-guided radiotherapy

A team of researchers from VSL Dutch Metrology Institute and the University Medical Centre Utrecht have, for the first time ever, carried out calorimetric absorbed dose to water measurements in a 1.5 T magnetic field of an Elekta Atlantic MRI-linac. The measurements that

⊟-Menu

during treatment, may become treatable.

Formalism

Adaptation Strategies

Current dosimetry formalisms do not account for the effect of the magnet field on the ionization chamber response:

Original Formalism
$$D_w^Q = M \cdot N_{D,w}^{60} \cdot k$$

$$P_w^Q = M \cdot N_{D,w}^{^{60}Co} \cdot k_Q \cdot k_B^Q$$

 k_B^Q (or k_B) is difficult to measure. Monte Carlo difficult to validate empirically.

Ion Chamber Orientation

k_B vs Beam Quality

Adaptation Strategies

* Malkov et al. (2018). "Monte Carlo study of ionization chamber magnetic field correction factors as a function of angle and beam quality." Med. Phys. 45(2), 908–925

Electromagnet Setups

Adaptation Strategies

- Range of magnetic fields
- Requires small volume water phantom

 limited phantom scatter / field size
- Chamber is restricted to an orientation perpendicular to the magnetic field and the beam

Agnew et al. (2017). "Quantification of static magnetic field effects on radiotherapy ionization chambers" Phys. Med. Biol. 62(5), 1731-1743

Spindeldreier et al. (2017). "Radiation dosimetry in magnetic fields with Farmer-type ionization chambers: determination of magnetic field correction factors for different magnetic field strengths and field orientations." Phys. Med. Biol. 62(16), 6708–6728

Dose to Water

Adaptation Strategies

- NPL using Alanine
- Calorimetry
 - Water calorimetry (VSL)
 - Graphite calorimetry (see next presentation)

* L de Prez et al. (2016). "A water calorimeter for on-site absorbed dose to water calibrations in 60Co and MV-photon beams including MRI incorporated treatment equipment" Phys. Med. Biol. 61(13), 5051-5076

Published values of k_{B}

Adaptation Strategies

	0.1 T	0.2 T	0.3 T	0.4 T	0.5 T	0.6 T	0.7 T	0.8 T	0.9 T	1.0 T	1.1 T	1.5 T	3.0 T
-X	1.003	0.996	0.988	0.978	0.967	0.958	0.952	0.946	0.945	0.943	0.945	0.959	1.019
+X	0.993	0.985	0.974	0.961	0.952	0.941	0.936	0.932	0.931	0.931	0.933	0.954	1.037
-Y	0.998	0.999	0.998	0.996	0.994	0.993	0.992	0.992	0.992	0.992	0.992	0.992	0.992
+Y	0.999	0.999	0.998	0.995	0.994	0.994	0.992	0.993	0.993	0.992	0.992	0.993	0.990
-Z	0.999	1.000	0.998	0.997	0.997	0.997	0.995	0.994	0.994	0.993	0.993	0.990	0.984
+Z	1.000	0.999	0.998	0.999	0.997	0.995	0.995	0.995	0.993	0.994	0.992	0.990	0.983

Spindeldreier et al. (2017). "Radiation dosimetry in magnetic fields with Farmer-type ionization chambers: determination of magnetic field correction factors for different magnetic field strengths and field orientations." Phys. Med. Biol. 62(16), 6708-6728

Detector	$k_{B_{\parallel}}^{Q_{\rm msr}}$	$k_{B}^{Q_{\text{msr}}}$	$k_{B}^{Q_{\text{msr}}}$	Uncertainty (%)	
	D	P_{\wedge}	50		
PTW 30013	0.994	0.961	0.976	0.15	
PTW 30012 ^a	0.992	0.958	0.970	0.25	
PTW 30011 ^a	1.000	0.958	0.968	0.25	
PTW 30010 ^a	0.996	0.961	0.975	0.25	
NE2571 ^a	1.003	0.962	0.973	0.20	
NE2571	1.001	0.962	0.973	0.15	
Exradin A19	1.005	0.962	0.956	0.25	

^aChambers modeled with a 1 mm thick layer of PMMA representing a water-proof sleeve.

O'Brien et al. (2016). "Reference dosimetry in magnetic fields: formalism and ionization chamber correction factors." Med. Phys. 43(8), 4915-4927

23 | Focus where it matters

	. .Р					nber $[V(cm^3)]$	$\ _{ch}$	$\ _{ph}$
					A12	(0.65)	0.9983	0.9940
					A19	(0.62)	1.0007	0.9964
0.8 T 0.9 T	1.0 T	1.1 T	1.5 T	3.0 1	A2 (0.54)	0.9989	0.9952
0.946 0.945	0.943	0.945	0.959	1.01	T2 (0.54)	1.0004	0.9999
0.932 0.931	0.931	0.933	0.954	1.03	A12	S (0.25)	0.9984	0.9962
0.992 0.992	0.992	0.992	0.992	0.99	A18	(0.125)	0.9981	0.9971
0.002 0.002	0.002	0.002	0.002	0.00	A1().057)	0.9962	0.9983
0.993 0.993	0.992	0.992	0.993	0.99	A1S	L (0.057)	0.9966	0.9983
0.994 0.994	0.993	0.993	0.990	0.98	A14	* (0.016)	0.9718	0.9827
0.995 0.993	0.994	0.992	0.990	0.98	T14*	*(0.016)	0.9696	0.9837
ith Earmar tu	o ionizatio	n chamb	oro:		A14	SL* (0.016)	0.9725	0.9823
ntri Farmer-ty			315. 		A16	* (0.016)	0.9600	0.9830
c field strengt	ns and field	a orientati	ons." Phy	/S.		011 (0.5)		0.000
					3001	0 ^{**} (0.6)	0.9872	0.9932
					3001	1" (0.6)	0.9920	1.0009
					3001	2" (0.6)	0.9870	0.9938
					3001	13 (0.6)	0.9881	0.9937
					3100	0 (0.015)	0.9867	0.9953
	Current	y publi	ished		3101	0 (0.125) 6 (0.016)	0.9955	0.9905
vol					3101	0 (0.010) 4 (0.015)	0.9963	0.9992
vai	ues are		e Can	0	5101	4 (0.013)	0.9951	0.9992
b	ased. N	lost st	udied		FC6	5-G (0.65)	0.9917	0.9914
	ahami	horio	the		FC6	5-P (0.65)	0.9917	0.9901
	Cham	bei is	line		FC2	3-C (0.23)	0.9980	0.9972
wa	ternroo	f PTW	3001	3	CC2	25 (0.25)	0.9987	0.9968
w a	_			0	CC1	3 (0.13)	0.9990	0.9969
	Farmer	r cham	ber.		CCO	8 (0.08)	0.9975	0.9973
					CC0	4 (0.04)	0.9971	0.9998
					CC0	1 (0.01)	0.9805	0.9889
					NE2	581 ^w (0.6)	0.9993	1.0011
Malkov & Pa	aore (201		Carlo of		nization NE2	571 ^w (0.6)	0.9888	0.9922
		b). WOULD	r Gario Sl		otion of NE2	561 ^w (0.325)	0.9963	0.9875
angle a	nd beam a	uality." M	ed. Phvs.	. 45(2)	08–925 PR0	6C/G ^w (0.65)	0.9986	0.9973

 $k_B (1.5 \text{ T})$

Need for standards

24 | Focus where it matters

Need for standards

- Current protocols do not explicitly account for magnetic fields
- Adapting existing protocols in a clinic means deviating from the protocols (Legal implications? Accreditation implications?)
- Limited published data need for consensus and standardization

Thank you

daniel.obrien@elekta.com

