Update on AFRRI's Cytogenetic Biodosimetry Activities

William F. Blakely, PhD AFRRI

Uniformed Services University

Disclaimer

The opinions, conclusions, and recommendations expressed or implied do not necessarily reflect the views of the Department of Defense or any other department or agency of the federal government.

Funding

The Armed Forces Radiobiology Research Institute (AFRRI) supported this research under work unit RBB4431 (awarded to WFB).

Jniformed

niversitv

Co-contributors

Uma Subramanian, MS

Kuang-Heng Hsiao

Brett O'Brien

Lyudmila Romanyukha, PhD

David L. Bolduc, PhD

Outline

- Cytogenetic Biodosimetry Background
- AFRRI's Cytogenetic Biodosimetry Laboratory
- Dicentric Chromosome Aberration (DCA) Assay
 - Manual scoring
 - Automated scoring
- Premature Chromosome Condensation (PCC) Assay
 - Centromeric painting to score dicentrics
 - Multiple endpoints

(excess fragments, rings, length ratio, and dicentrics)

DoD Biodosimetry Network

Uniformed

niversitv

Cytogenetic Biodosimetry

2011

Uniformed Services University

DCA - Reference	DCA - Triage	Manual		
INTERNATIONAL ISO STANDARD 19238	INTERNATIONAL ISO STANDARD 21243	2011		
Radiological protection — Performance criteria for service Jaboratories performing biological dosimetry by cytogenetics Radioprotection — Oritera de performance pour les laboratoires de service protaguant la dasmétrie biologique per cytogehetique	Radiation protection — Performance criteria for laboratories performing cytogenetic triage for assessment of mass casualities in radiological or nuclear emergencies — General principles and application to dicentric assay Ratioprotector – orders & performance pour at Jacobies nuclear effected of gland notice e perconse – bindpes generau e application au dicentiques	Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies		
Reference number 150 Jars 2014(1) 20 Jars 12 20 Jars 12	Representation INO 21242-2020810 Unit of the control of the contro	PUBLICATION DATE: SEPTEMBER 2011		

TABLE 1. COMPARISON OF CYTOGENETIC ABERRATION ASSAYS USED FOR DOSE ASSESSMENT^a

	Cytogenetic Aberration Assays						
	Premature chromosome condensation (PCC)	Dicentric (and ring) (DCA)	Fh hyb	orescent in situ idization (FISH)	Cytokinesis-block micronucleus (CBMN)		
Typical aberrations scored for biological	excess chromosome fragments;	dicentrics ^b (and rings)	dice	ntrics ^b (and rings)	micronuclei		
dosimetry applications	translocations ^b		translocations ^b		nucleoplasmic bridges		
	L'ansiovations	Less variable Gold Standard		Higher background Effect of other events			
Typical radiation scenario applications	acute recent exposure	acute protracted recent exposure		acute protracted old exposure	acute protracted recent exposure		
Photon equivalent, acute dose range (Gy) for whole-body	0.2 to 20	0.1 to 5		0.25 to 4	0.3 to 4		
dose assessment	For higher doses		St	Karyotyping able aberrations			
body exposure applications	Yes	Yes		NA ^c	NA		
Useful for triage dose assessment	Yes	Yes		NA	Yes		
Status of assay standardization	NA	ISO standards [3, 4]		NA	ISO standard — pending, and [5]		

* Table modified from TMT Handbook [6].

^b Specific chromosome aberrations typically detected by use of centromeric and whole-chromosome specific DNA hybridization probes.

⁶ NA: not applicable/not available.

Experimental Design - Human peripheral blood ex vivo irradiation model

AFRRI Resources – Cytogenetic Activities

PII

PIII

AFRRI

Multiple Radiation

Sources and

Dosimetry Support

www.metasystems.org/

Hanabi Metaphase Chromosome Harvesters

Hanabi Metaphase Chromosome Harvesters

Uniformed Services University

MetaSystems Inc. Ikaros Karyotyping Software

Uniformed

University

Services

Metasystems Inc. - Metafer

MSearch

Auto Capture

Metafer

DC Score

www.metasystems.org/

Sugarman SL, Livingston GK, et al. The Internet's Role in a Radiation Mass Casualty, Health Phys 106(5 Suppl 2): S65-70, 2014. Romm H et al. Automatic scoring of dicentric chromosomes as a tool in large scale radiation accidents. Mutat Res. 756(1-2):174-83, 2013

Dicentric Chromosome Aberration (DCA) Studies

- Performance exercises and inter-comparisons
- Quality control studies:
 SOPs
 - Equipment checks & maintenance records
 - Validation reports
- Enhancement of processing and throughput

2013-Nov-25 Experiment

Exercises/Inter-laboratory Comparisons

UNIFORMED SERVICES UNIVERSITY of the Health Sciences Armed Forces Radiobiology Research Institute

Recent AFRRI cytogenetic biodosimetry exercises and inter-comparison studies							
Report Date	P.O.C.	Blood shipping & culture	Quick scan scoring (20 spreads per scored sample)	Triage scoring (50 or 500 spreads per samples)	Comment(s)		
May 2014	Special Forces Exercise (North Carolina)	+ (n = 1)		+ (n=1, duplicate)	Task completed <60 h for result report from receipt of blood samples		
May 30, 2014	Wilkins (Health Canada)	+ (n=10)	+ (n=10)	+ (n=10)	<60 h (Quick Scan) for result report to be sent from receipt of blood		
Nov 2014	Wilkins (RENEB-1a)	-	-	+ (n=2, duplicates)	Task completed and report submitted		
Jan 2015	Wilkins (RENEB-1b)	-	-	+ (n=2, duplicates)	Task completed and report submitted		
Nov 2015	Wilkins (Health Canada)	+(n=10)	+	+	Task completed		
Oct 2016	Wilkins (Health Canada)	+(n=11)	-	+(n=1)	Task completed		
Jan 2017	Wilkins (RENEB-II)	-	-	500 spreads (n=3)	Task completed		
Mar 2018	Wilkins (Health Canada)	+(n=10)	-	+(n=10)	On-going		

Automatic Scoring of Dicentric Chromosomes as a Tool in Large Scale Radiation Accidents

- Semi-automated dicentric scoring is less efficient than manual scoring of dicentrics (Left panel)
- Calibration curves produced by 6 labs using semi-automated scoring, each with their own selected classifiers, were not statistically different from each other (right panel).
- Blind test was performed by the 6 labs using semi-automated dicentric scoring and they were able to distinguish doses within ±0.5 Gy.

Romm H et al. Mutat Res 756:174-183, 2013. Romm, H et al. Health Phy 106(6): 764-771, 2014

Hypothesis/Methods

Ho: Can the use of automated dicentrics scoring enhance the throughput of analysis supporting dose assessment by cytogenetics?

Brett O'Brien

Conduct DCA assay (outlined in previous slide)

Create spreads using HANABI spreader

Stain and coverslip slides

Perform an "**MSearch**" at 10x

AutoCapture images at 63x

Run **DC Score** to detect dicentrics

Data analysis

id to

Hanabi Metaphase Chromosome Harvesters

Hanabi Metaphase Chromosome Spreader

MetaSystems Inc, Metafer www.metasystems.org/

MSearch -> AutoCapture -> DC Score 10X 63X 63X

Dose Response Using the Automated Scoring of the Dicentric Chromosome Aberration Assay: Total-Body Irradiation (TBI) vs Partial-Body Irradiation (PBI)

Hypothesis

Use of centromeric PNA-FISH in

Jason Hsiao

the existing PCC assay can more

accurately identify dicentrics for

dose assessment

Fluorescent in-situ hybridization

Centromeres stained with fluorescent red probe Dicentrics (or more) can be easily visualized Score 50 dicentrics or 100 spreads per dose across dose-response range Construct calibration curve with linear quadratic fit

3 Gy spread

DC 1 DC 2

Fitted Calibration Curve

y = -0.5899 (+/- 0.28) + 0.6903 (+/- 0.0645)x + -0.0095 (+/- 0.0025) x^2 R² = 0.9931

dicentrics

Various endpoints are currently being considered for use in dose assessment using the PCC assay, however, there is no consensus as to the optimum endpoints to use. Studies performed here were focused on evaluating four PCC endpoints (i.e., PCC fragments, rings, LR, and dicentrics) for dose assessment following TBI and PBI.

Dose responses for the four PCC parameters in all G_2/M -PCC were determined and fitted with various models. These radiation calibration curves would be used in the case of a **TBI**.

The fraction of damaged cells, knowing the dose, can then be determined from the calibration curves of the dose response of fraction of damaged cells containing \geq 48 fragments per cell (Figure A), \geq 1 ring per cell (Figure B), \geq 10 LR per cell (Figure C), and \geq 1 dicentric per cell (Figure 3D) here shown for 100% irradiated cells. These calibration curves would be proportional adjusted for the fraction of the body exposed.

Dose_{PBI} = **Dose**_{TBI}

If the PBI dose was equal to the TBI dose, then we would use the TBI radiation curves for dose assessment.

Dose_{PBI} > Dose_{TBI}

If the PBI dose was significantly greater than the TBI dose, then we would suspect a partial-body exposure and use the appropriate PBI calibration curves.

Dose responses for the four PCC parameters in damaged G_2/M -PCC were determined and fitted with various models (Figures A-D). These radiation calibration curves would be used in the case of PBI and represent the first introduction of the use of the four novel endpoints (i.e., Q_{PCC} , Q_R , Q_{LR} , and Q_D) for application in dose assessment for **PBI** using the PCC assay.

DOD Biodosimetry Network: Initial Design Involving AFRRI & NDC

Blakely WF, Romanyukha A, Hayes SM, Reyes RA, Stewart HM Jr, Hoefer MH, Williams A, Sharp T, Huff LA. U.S. Department of Defense Multiple-Parameter Biodosimetry Network. Radiat Prot Dosimetry. 172(1-3): 58-71, 2016; doi: 10.1093/rpd/ncw295. Epub 2016 Nov 24

University

Abstract for platform presentation at the 2018 CIRMS 26th Annual Meeting, NIST, Gaithersburg, MD, 16-18 April 2018; submit to Ms. Renata Freindorf (renata@cirms.org).

Update on AFRRI's Cytogenetic Biodosimetry Activities

William F. Blakely, Uma Subramanian, Kuang-Heng Hsiao, Brett O'Brien, Lyudmila Romanyukha, and David L. Bolduc

Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA;

ABSTRACT

Cytogenetic biodosimetry using the IAEA manual and relevant ISO standards is the generally accepted method for radiation dose assessment in cases of suspected radiation over-exposures. The Armed Forces Radiobiology Research Institute (AFRRI) Biodosimetry Center provides biodosimetry capability based on the use of the dicentric chromosome aberration (DCA) and premature chromosome condensation (PCC) cytogenetic assays. In the last year the number of donors contributing to AFRRI's baseline for use of the dicentric chromosome aberration (DCA) assay has doubled to 20, which improves our ability to assess potentially low-dose exposures. We have recently obtained a commercial software application to permit routine karyotyping of metaphase spreads in cases where radiation-induced chromosome aberrations are detected in order to evaluate for potential clonal aberrations. Our laboratory replaced its automated metaphase finder and applied the use of the automated scoring software to develop a dose-response calibration curve that permits rapid scoring of dicentric aberrations in cases of suspected radiation accidents. In the last few years we have participated in multiple exercises/inter-comparisons and successfully demonstrated blood collection and shipping in a military deployment activity as well as the ability to use both the conventional- and QuickScan-DCA analysis methods for dose assessment. In addition, efforts to establish the premature chromosome condensation (PCC) assay are underway to provide the laboratory with a second cytogenetic biodosimetry assay with robust capability for assessment of partial-body and higher doses (>5 Gy). Blood was exposed to 137 Cs gamma ray doses 0 – 26 Gy at 0.59 Gy/min. Cultures were incubated for 2 hr at 37°C following with 48 hrs in the presence of PHA with the final 0.5 hr. with 100 nM calyculin A. Dicentrics in PCC spreads were measured using the centromeric protein nucleic acid (PNA) probe using fluorescence *in situ* hybridization. Results from the analysis of excess PCC f

[The views expressed in this abstract are those of the authors and do not necessarily reflect the official policy or position of DoD, AFRRI, USUHS, nor the U.S. Government. Funding support provided by AFRRI RBB4431317 and RBB4352317.]

Dear Bill,

The time we have allocated for each speaker is 30 min. Please plan for a 25 min presentation followed by a 5 min Question and Answer period. Thank you! Ronnie Minniti *Co-Chair of the CIRMS Medical Applications Subcommittee*

Ronnie Minniti, PhD National Institute of Standards and Technology 100 Bureau Drive, B245/C229 Gaithersburg, MD 20899-8460

E-Mail: <u>rminniti@nist.gov</u> Phone: (301) 975-5586 Fax: (301) 869-7682

Hi BIll,

Each speaker has a 25-min slot, with a common agenda of a 20-minute presentation, with around 5 minutes of questions. Does this answer your question? Best, Regina Regina Fulkerson <rmkenned@gmail.com>

Session Chairs: Regina Fulkerson <rmkenned@gmail.com>; Wesley Culberson <wsculberson@wisc.edu>; Minniti, Ronaldo (Fed) <ronnie.minniti@nist.gov>

