Establishing a Canadian-traceable calibration of high-dose rate sources

<u>Iymad Mansour</u>^{1,2}, Malcolm McEwen ², Chris Howard³ (1) Carleton University (2) National Research Council (3) Nordion April 2018 CIRMS

Outline

1. High dose standard

- Historical approaches
- 2. Development of high dose methodology
 - Low dose alanine
 - Verification of protocol
- 3. Industrial dosimetry
 - Collaboration process

What you need to know

- Currently no high dose standard traceable to a Canadian facility
- Goal is to develop a high dose dosimetry program traceable to the NRC

Possible solutions

Alanine

- Alanine is a neutral non-polar amino acid
- Z_{eff} of 6.8, close to water
- Density of 1.42 g/cm³
- Radiation induced free radicals can be determined using EPR

Signal-to-dose conversion

$$D = \frac{S \cdot k_t \cdot k_T \cdot c}{m}$$

- S is the "peak to peak" height from the EPR spectrum
- k_t and k_T represent temperature corrections for time of readout and time of irradiation respectively
- c is a constant that converts from E_{dep} to spectrum output
- m is the mass of the dosimeter

Canadian absorbed dose primary standard

Absorbed dose standard comparison

NRC CNRC

Limits of water calorimetry

Limited to:

- Dose rates less than 10 Gy/min
- Doses less than 10 Gy

Need:

• Transfer dosimeter

Low dose alanine

- Historically alanine has been used primarily for doses in the kGy range
- Low dose alanine is dominated by background signal

Low dose background subtraction

- Remove cavity background
- Removes alanine based background
- Exploits linearity of alanine response

Alanine calibration using NRC Cobalt-60

12

Uncertainty mitigation

Target: Sub 1 %

Reproducibility

Reproducibility from pellet positioning

Pellet position affecting intensity of alanine spectrum

Reproducibility of spectrometer

Uncertainty budget

Component	Std. Unc (10 Gy)(%)
Primary standard realization of dose	0.4
Alanine readout Positioning, Precision (5 Pellets), Mass	0.16
Spectrometer reproducibility	0.24
<u>Overall:</u>	<u>0.49 (σ = 1)</u>

NRC-NPL alanine dosimetry verification

- NPL has been a world leader in alanine dosimetry
- Established program since early 90's
- Has both industrial and clinical dosimetry service

Protocol verification

- Step one: irradiation at NRC, readout at NPL
- Step two: irradiation at NPL, readout at NRC

Equipment available at the NRC

• NRC has a Gammabeam irradiator with ~ 1Gy/min doserate

Industrial dosimetry is not feasible at the NRC

Achieving high doses through collaboration: Nordion

Equipment used in process

Low dose

Range: 0-500 Gy

Mid dose

Range: 20 - 5000 Gy

High dose

Range: 20 – 200000 Gy -

Bootstrapping to industrial dosimetry

Summary

Developed low dose program

Verified program with experienced facility Bootstrap low dose program with help of collaboration

Conclusion

- Alanine has the potential to work as an audit dosimeter with an overall uncertainty below 1% for $\sigma=1$
- It is a suitable dosimeter on the range from 5 Gy to kGy
- NRC has the capability to offer a high dose rate calibration serive

Thank you

Acknowledgements

Malcolm McEwen, Bryan Muir - NRC Peter Sharpe, Clair Gouldstone - NPL Chris Howard - Nordion

> Iymad Mansour MSc student, Carleton university IymadMansour@cmail.carleton.ca www.nrc-cnrc.gc.ca

*

National Research Conseil national de Council Canada recherches Canada

