Interplanetary Energetic Particle Measurements with NASA's Heliophysics System Observatory

John F. Cooper Chief Scientist, NASA Space Physics Data Facility Principal Investigator, Virtual Energetic Particle Observatory Heliophysics Science Division NASA Goddard Space Flight Center

DREAM-2 is a Goddard-led science team of the NASA Solar System Exploration Research Virtual Institute (SSERVI) PI: William Farrell, NASA GSFC

Project Scientist: Robert E. McGuire NASA GSFC

+ Home

Virtual Energetic Particle Observatory

- + Introduction
- + Data Product Information
- + Organization
- + Data Sources
- + Multi-source Spectra

LATEST VEPO NEWS Principal Investigator: John F. Cooper, NASA GSFC

- + Relativistic Electrons Uncovered with NASA's Van Allen Probes M. Johnson-Groh, NASA/GSFC, Mar. 15, 2017
- + Alien Particles from Outer Space are Wreaking Low-grade Havoc on Personal Electronic Devices
- D. Salisbury, Vanderbilt University, Feb. 17, 2017
- + Extreme Space Weather-Induced Electricity Blackouts Could Cost U.S. more than \$40 Billion Daily American Geophysical Union, Jan. 18, 2017

Warning: Be careful what data you look for, you may find it !

The multi-source spectral plots and tabular data allow investigation of large scale radial and longitudinal gradients in intensities from multiple spacecraft and instrument sources, e.g. between the orbits of Mercury, Venus, Earth, Mars, and beyond ...

Mars Express (ASPERA) June 2003 - Present

Solar Orbiter

Professor Eugene (Gene) N. Parker

Department of Physics and Astronomy Enrico Fermi institute University of Chicago

Meyer, Parker, and Simpson (Phys. Rev., 1956)

FIG. 2. Nucleonic component intensity as a function of time for the Chicago neutron monitor E-3. One-minute intervals are shown between ~ 0350 and ~ 0423 U.T. (a) Onset of intensity increase on expanded scale. (b) Period of the cosmic ray increase during which balloon flight number 2 was undertaken (see also Fig. 5).

Mars orbits at 1.38 – 1.67 AU within inner zone of the Meyer et al. shell of turbulent interplanetary magnetic fields

Solar energetic particles propagate relatively freely along solar wind magnetic field lines from Sun to Mars

Voyager 1 left the
heliosphere at 122 AU on Aug. 24, 2012

Cosmic ray particles are heavily modulated at Mars and Earth after inward diffusion from the outer heliosphere and local interstellar space.

Meyer, Parker, and Simpson (Phys. Rev., 1956)

FIG. 8. Cross section of the model for the inner solar system at the time of the solar flare of February 23, 1956. The inner volume r=a represents a cavity "free" of magnetic fields (*B* (rms) <10⁻⁶ gauss). The barrier of thickness b-a represents the shell-like region through which the cosmic rays diffuse.

Carrington Solar Flare Event – Sept. 1, 1859

Fig. 3. Carrington's drawing of Sunspot Group 520 on 1 September 1859 (from Carrington, 1860). The initial locations of the white light

Airapetian et al. (Nature Geosci, 2016)
~ 1 Carrington Super-CME
Event per day @ 0.7 Gyr

"1859 Carrington Event" at Stereo A (STA): July 23, 2012

3-D Average Directional Proton Flux Spectrum Worst Case: Peak Flux, July 23, 2012 "Carrington" Event

MSSP1 H CARRINGTON20120723 b.pgw JFC 2018-04-13

What are the time-averaged proton and helium ion flux spectra at 1 AU? Composite Proton and Helium Spectra at 1 AU from VEPO MSSP-1 Data

Cooper2017_Full-H-Spectrum_Model-1_g_1 JFC 2017-11-02

1-AU Reference Proton Spectrum

Cooper2017_Full-H-Spectrum_Model-1_d JFC 2017-08-12

Phobos Surface Radiation Model Version 1 (Protons > 10 keV)

Sturner20170803_compare_all_H2O_Z-DOSRATE_b.pgw JFC 2017-08-13

The Most Valuable Real Estate on Phobos: sub-Mars point (X)

Least Shielding $1 - 10 \text{ g/cm}^2$

Human Explorations on the Moon

More Shielding 10^2 g/cm^2

Most Shielding $\geq 10^3 \text{ g/cm}^2$

Comparison of Local Interstellar and Inner Heliosheath Model Flux Spectra

No direct LISM suprathermal particle measurements below 1 MeV, so we use Cummings et al. (2016) limit for suprathermal 0.01 keV – 1 MeV spectrum from molecular cloud ionization. We consider this to be lower limit, as per following slides.

Aug. - Dec. 1989 SEP Event at 1 AU and Voyager 2

10³ **1 AU** 89-08-03 to 89-12-16 SEP 10^{2} Differential Flux (/cm²-s-sr-MeV) **10¹ 10⁰ 30 - 32 AU** 10⁻¹ 89-09-17 to 90-03-26 10⁻² Legend **IMP-8 GME** 10⁻³ IMP-8 CRNC Voyager-2 LECP H 10⁻⁴ Voyager-2 LECP Ion Voyager-2 LECP CRS GCR 10⁻⁵ 10^{-2} 10⁰ 10^{2} 10⁻¹ 10¹ 10^{3}

MSSP1_H_198908-SEP_1AU-31AU_a.pgw JFC 2018-01-07

Proton Energy (MeV)

March - July 1991 SEP Event at 1 AU and Voyager 2

 10^{3} AU SEP 91-03-23 to 91-07-14 10^{2} Differential Flux (/cm²-s-sr-MeV **10¹** /rī - 36 AU 10⁰ 35 -05-30 to 10⁻¹ -10 - 17 10^{-2} Legend IMP-8 GME 10⁻³ IMP-8 CRNC Voyager-2 LECP H Voyager-2 LECP Ion 10^{-4} Voyager-2 CRS GCR 10⁻⁵ 10^{-2} 10⁻¹ 10^{0} 10^2 **10¹** 10^{3}

MSSP1_H_199103-SEP_1AU-35AU_a.pgw JFC 2018-01-06

Proton Energy (MeV)

SPDF in the Heliophysics Science Data Management Policy

- One of two (active) Final Archives
 - Find, ingest, preserve long-term and ensure ongoing (online) useful access to non-solar NASA heliophysics science data
- Support critical infrastructure in the Heliophysics Data Environment
 - Heliophysics-wide dataset inventory (Heliophysics Data Portal / HDP)
 - CDF (Common Data Format) and metadata standards
 - APIs (Application Programming Interfaces, e.g. webservices) to SPDF system capabilities and data
- Center of Excellence for unique science-enabling services
 - CDAWeb
 - SSCWeb and 4D Orbit Viewer
 - OMNIweb

Spacecraft or Instrument	Time Average	Ion	Time Duration	Energy Range (MeV/n)
Advanced Composition Explorer (ACE)			1997-08-25 – Present	
Electron, Proton, and Alpha Monitor (EPAM)	1 day	He	1997-08-30 - 2015-05-30	0.4 - 3.9
Solar Energetic Particle Ionic Charge Analyzer (SEPICA)	1 hour	H, He	1997-10-07 - 2005-02-05	0.40 - 6.0
Solar Isotope Spectrometer (SIS)	1 hour	He	1997-08-29 - 2018-01-07	3.4 – 41.2
Ultra-Low-Energy Isotope Spectrometer (ULEIS)	1 hour	H, He	1998-02-19 - 2018-01-07	0.06 - 8.7
Helios 1			1974-12-10 - 1986-02-10	
Cosmic Ray Particle Instrument (E6)	1 hour	H, He	1974-12-11 - 1983-12-31	4.0 - 51.0
Cosmic Ray Instrument (E7)	30 min	H, He	1974-12-16 - 1982-12-31	3.4 - 206.5
Helios 2			1976-01-15 - 1980-03-03	
Cosmic Ray Particle Instrument (E6)	1 hour	H, He	1976-01-16 - 1980-03-08	4.0 - 51.0
Cosmic Ray Instrument (E7)	30 min	H, He	1976-01-19 - 1979-12-23	3.4 - 204.5
Interplanetary Monitoring Platform 8 (IMP-8)			1973-10-26 - 2006-10-07	
Charged Particle Measurements Experiment (CPME)*				
Cosmic Ray Nuclear Composition (CRNC) Experiment	1 hour	Н,Не	1973-10-30 - 2001-10-26	10.9 - 95.0
Goddard Medium Energy (GME) Experiment	30 min	H,He	1973-10-30 - 2001-10-26	0.9 - 237.0
WIND			1994-11-01 - Present	
Energetic Particle Acceleration, Composition and Transport (EPACT) - LEMT	1 hour	He	1994-11-03 - 2017-12-31	2.0 - 7.4
EPACT - STEP	1 hour	He	1995-01-01 - 2017-12-17	0.04 - 2.5

Spacecraft or Instrument	Time Average	Ion	Time Duration	Energy Range (MeV/n)
Pioneer 10			1972-03-03 - 2003-01-23	
Charged Particle Instrument (CPI)	15 min	H, He	1972-03-03 - 1992-08-27	3 - 67
Cosmic Ray Telescope (CRT) Experiment	6 hour	H, He	1972-03-06 - 1994-12-31	3.4 - 413.0
Pioneer 11			1973-04-06 - 1995-09-30	
Charged Particle Instrument (CPI)	15 min	H, He		3 - 67
Cosmic Ray Telescope (CRT) Experiment	6 hour	H, He	1973-04-06 - 1994-12-31	3.4 - 413.0
Solar Heliospheric Observatory (SOHO)			1995-12-02 – Present	
Energetic and Relativistic Nuclei and Electron (ERNE) Experiment	1 hour	H, He	1996-05-07 - 2017-12-25	1.3 - 130.0
Solar Terrestrial Relations Observatory A (STEREO A)			2006-10-26 – Present	
IMPACT/SEP High Energy Telescope (HET)	1 hour	Н	2006-12-01 - 2018-01-14	13.6 - 100.
IMPACT/SEP Low-Energy Telescope (LET)	1 hour	H, He	2007-03-29 - 2017-11-30	1.8 - 15.0
IMPACT/SEP Suprathermal Ion Telescope (SIT)	1 hour	H, He	2007-01-01 - 2017-09-14	0.1 - 10.2
Solar Terrestrial Relations Observatory B				
(STEREO D) IMPA CT/SED High Energy Telescope (HET)	1 hour	н	2006-12-01 - 2014-00-27	13.6 - 100
IMPACT/SEP I ow-Energy Telescope (LET)	1 hour	н Не	2000-12-01 - 2014-09-27	18.150
IMPACT/SEP Suprathermal Ion Telescope (SIT)	1 hour	H, He	2007-03-27 - 2014-09-27 2007-01-27 - 2014-09-29	0.1 - 10.2
Ulysses				
Cosmic Ray and Solar Particle Investigation (COSPIN)	1 day	H, He	1990-10-23 - 2009-06-30	2.0 - 95.0
Heliosphere Instrument for Spectra, Composition and Anisotropy at Low Energies (HISCALE)	1 day	He	1990-11-14 - 2009-06-09	0.3 - 3.9

Radiation Effects in the Solar System

• Space weathering of surfaces and atmospheres

Solar coronal plasma implantation \rightarrow solar wind ³He on the Moon (ISRU) Surface erosion by ion sputtering \rightarrow moon exospheric production Radiolytic change of molecular chemistry: H₂O \rightarrow OH, O₂ \rightarrow biology ? Deep dielectric charging by energetic particles \rightarrow discharge effects ? Secondary neutrons \rightarrow detect hydrogeneous composition (e.g. H₂O, CH₄) Radioisotopes \rightarrow surface and subsurface dating, heating of subsurface

• Hazards to robotic spacecraft and human explorers

August 7, 1972 solar flare event:

Between Apollo 16 (April 16 – 27) & Apollo 17 (Dec. 7 – 19) The next centennial "Carrington" event: 12% chance in next 10 years ! Mars mission round trip dose = 0.66 Sievert (66 rems) + large SEP dose? Spacecraft and surface charging hazards at $\Phi \le 10$ kV ?

Goal: Determine the characteristic flux spectra of protons, alphas and heavier ions measured on various time scales of days, months, years, solar cycles and epochs (e.g., Maunder Minimum to Modern Maximum), and, if possible, even over the age of affected solar system planets, moons, and rings.