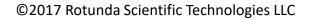


The Future Direction of Passive Dosimetry

Joe Rotunda CIRMS Meeting - NIST March 27th, 2017


Presentation Outline

History of Passive Dosimetry

Dosimetry Technology

Commercial Aspects

Standards

Origins of Thermoluminescence

Born: January 25, 1627, Ireland **Died:** December 30, 1691, London **Education:** University College, Oxford, Eton College

On October 27, 1663, Robert Boyle borrowed a diamond from his acquaintance, Mr. Clayton. And had some interesting times with it.

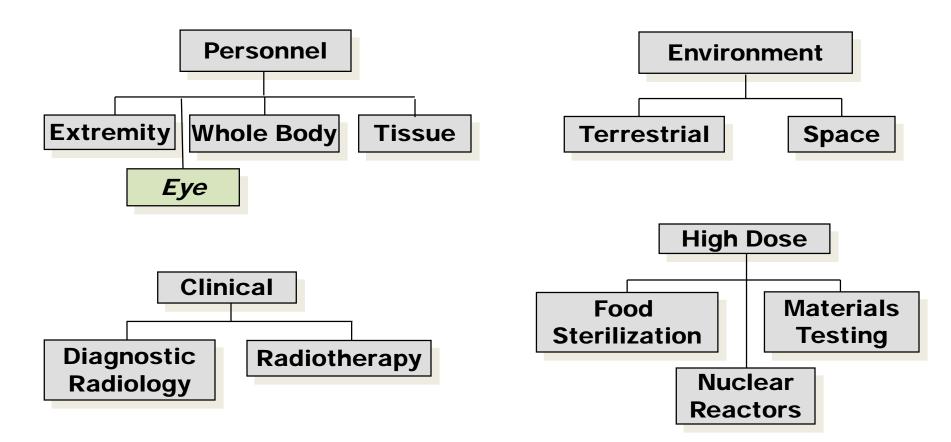
"Eleventhly, I also brought it to some kind of Glimmering Light, by taking it into bed with me, and holding it a good while upon a warm part of my naked body.

Twelfthly, to satisfy my self, whether the motion introduce'd into the stone did generate the light upon the account of its producing heat there, I held it near the flame of a candle, Till it was qualify'd to shine pretty well in the dark"

Robert Boyle (1663) report on a study he conducted to discover the cause of the luminescence behavior of a diamond which belonged to Mr. Clayton

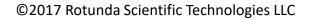
Thermoluminescence History

- 1663 Robert Boyle discovered the TL phenomena (Diamond)
- 1920s Marie Curie investigated the effects of radiation (radium) on calcium materials (CaF₂)
- 1950s Farrington Daniels (UW) first suggested the use of thermoluminescence as a technique in radiation dosimetry (~TLD-100 LiF)
- 1960s Harshaw Chemical company formulates TLD-100 (LiF:Mg,Ti)
- Many other TL, OSL & RPL materials have been studied and some commercialized to date



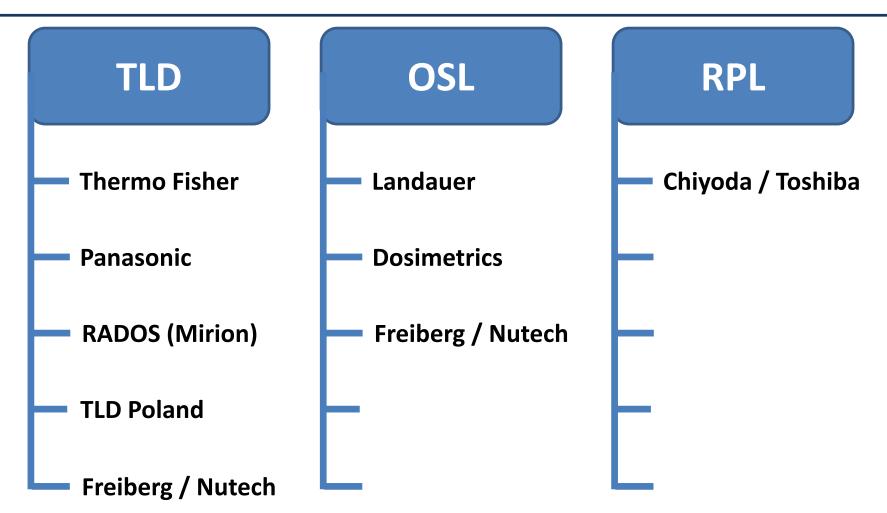
Applications of Passive Dosimetry

Source: McKeever S.W.S., Moscovitch M., and Townsend P.D., "Thermoluminescence dosimetry materials – properties and uses", Nuclear Technology Publishing, Kent, England. ISBN 1 870965 19 1, (1995).


Presentation Outline

History of Passive Dosimetry

Dosimetry Technology


Commercial Aspects

Standards

Traditional Passive Dosimetry Technologies

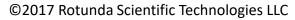
Many other country specific systems and materials with limited commercial extent

Fringe Passive Dosimetry Systems

Combined OSL & TLD

- High Resolution 3D Imaging
- Sample Automation
- Research Focus

Electron Spin Resonance (ESR)


- Alanine Dosimetry plus Tissue, Blood, Nails & Bone
- Detection Beginning to Encroach on Personal Monitoring

1111 2 1111

Passive-Active & Active Dosimetry

Active & Passive Dosimetry

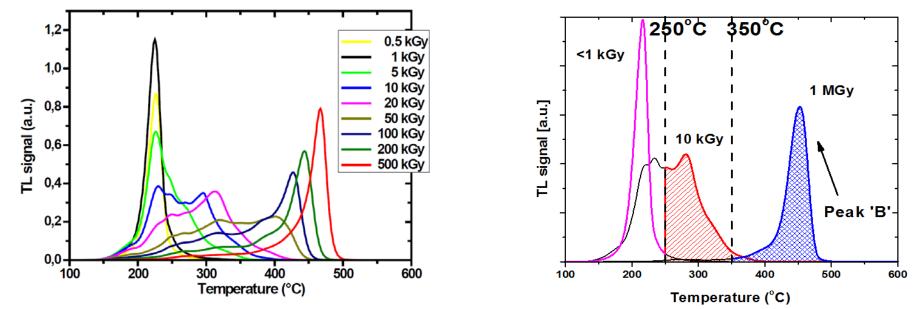
- Camera Provides Active Dosimetry
- Passive Dosimetry
 - Screen
 - Electronic Components
- Potentially Useful for Unexpected Radiological Events
- Cellular Provides
 Radiological Network

Ideal Personal Dosimetry Characteristics

Material

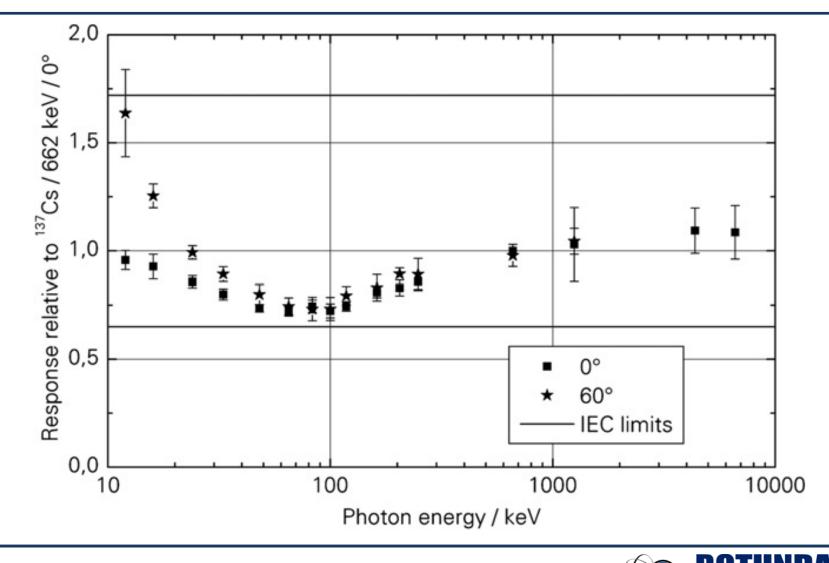
- Tissue Equivalent
- Energy Independent
- Cover Wide Dose Range
 - Environmental to Accident
 - Doserate Independent
 - No Supra / Sub Linearity
- No Fade
- Stable and Long Life
- Light Sensitivity Manageable
- Ability to Clear the Dosimetry Material Without Special Processing
- Complete Chain of Custody
- Able to Meet Current and Potential
 Future Requirements
- Linear or No Dose Algorithm

<u>Instrument</u>

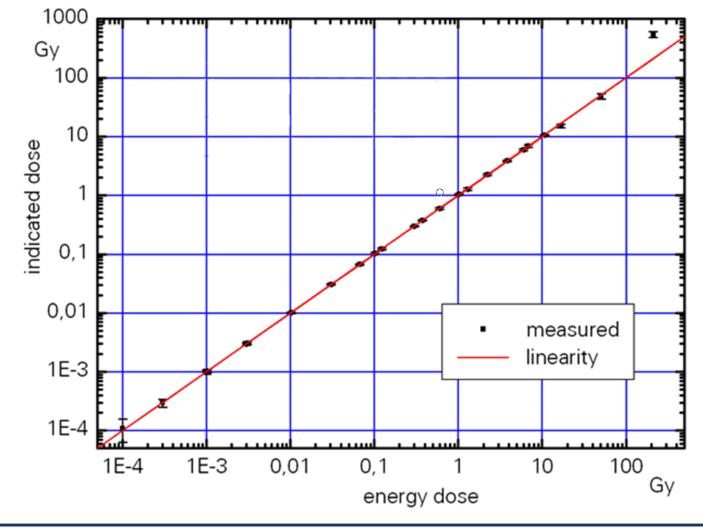

- Cover Wide Dose Range
- Capable of Reading Various Material Types
- Accurate Reproducible Readout
- Optimized Light Collection of Emitted TL
- Built In QA / QC Capability
- Reliability
- Easy to Maintain & Support
- Adequate Capacity Suited for
 Dosimetry Requirements
- Modularity & Scalability

High Level Dosimetry w/LiF:Mg,Cu,P TLDs

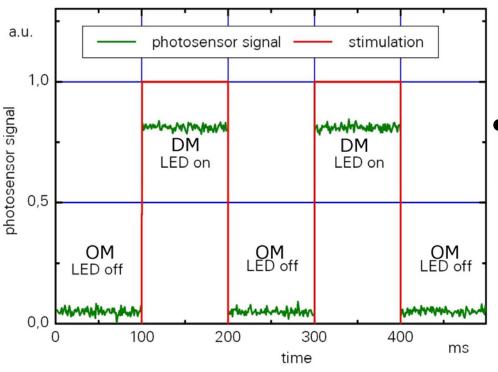
QUALITIES, ENERGIES AND DOSE RANGES OF RADIATION USED FOR TESTS OF HIGH-DOSE HIGH-TEMPERATURE EMISSION OF LIF DETECTORS


Radiation type	Radiation energy	Dose/Fluence range	References
Gamma	1.25 MeV	1 Gy - 1 MGy	[12], [13, [14], [15], [16]
Electron	6 MeV, 10 MeV	5 kGy - 1 MGy	[17], unpublished results
Proton	25 MeV, 23 GeV	1 Gy - 1 MGy	[15], [18],
Neutron	Thermal & epithermal; 180 MeV	$1 \times 10^4 - 3 \times 10^{15} \mathrm{n/cm^2}$	[19], [20], [21], [22], [33]
Alpha-particle	5.5 MeV	$1 \times 10^7 - 1 \times 10^{11} \alpha/\mathrm{cm}^2$	[23]
Mixed field	>20 MeV, HEH	Up to 10^{15} HEH/cm ²	[24], [25], unpublished results

Source: Barbara Obryk - Radiation Physics and Dosimetry Department, Institute of Nuclear Physics Polish Academy of Sciences Radzikowskiego 152, 31-342 Kraków, Poland



Hp(10) Energy Independence - BeO


www.RotundaSciTech.com

High Dose Linearity - BeO

Collecting the Raw Data

- Alternately Collect
 - OM1...OM5
 - DM1...DM5
- Also Collect
 - Dosimeter ID
 - Time stamp of the readout
 - Reader ID
 - Reader temperature T during readout

During Initial LED Stimulation the OSL Material is Evaluated to Determine Dose & LED Power Adjusted

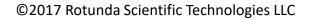
Source: Dosimetrics BeO Dosimetry System

Traditional Fixed Capacity Systems

Modularity – Manual to Automatic

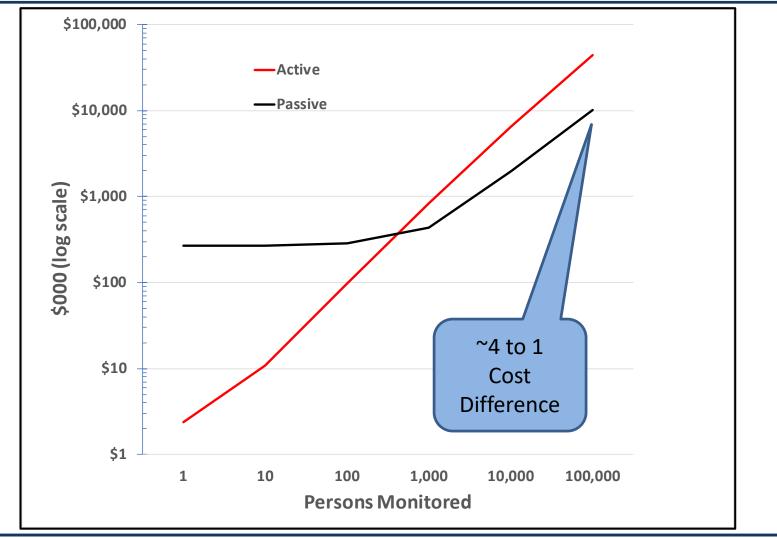
Scalability

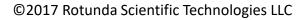
Robotics Augment Manual Systems To Provide Automation & Scalability


Presentation Outline

History of Passive Dosimetry

Dosimetry Technology


Commercial Aspects


Standards

Active vs Passive Cost Comparison

Active vs Passive Other Cost Considerations

- Annual Calibrations
 - Active Individually
 - Passive in Bulk
- Batteries
- Electronics Repair
- Replacement
- Shipping Costs
- Users / Management May Not Want To Perform Readouts

Presentation Outline

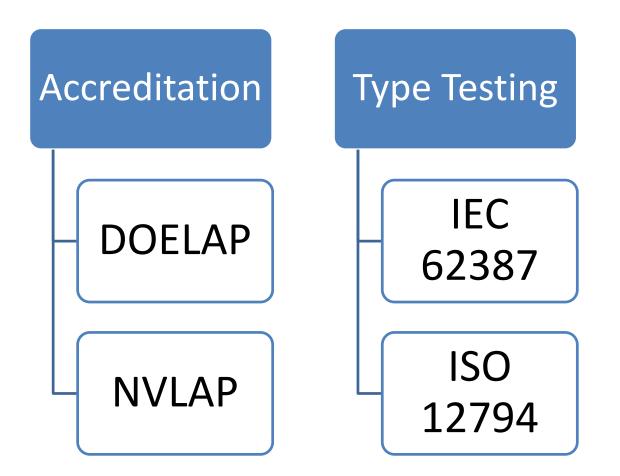
History of Passive Dosimetry

Dosimetry Technology

Commercial Aspects

Standards

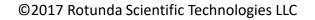
USA Dosimetry Accreditation Programs


Department of Energy Labs Department of Energy Laboratory Accreditation Program (DOELAP)

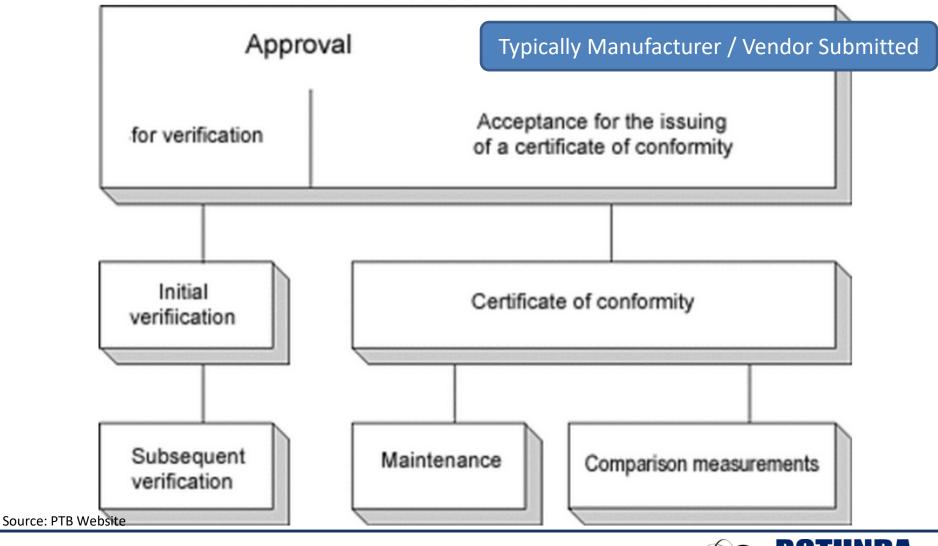
Nuclear Regulatory Commission

National Voluntary Laboratory Accreditation Program (NVLAP)

Different Methods of Testing

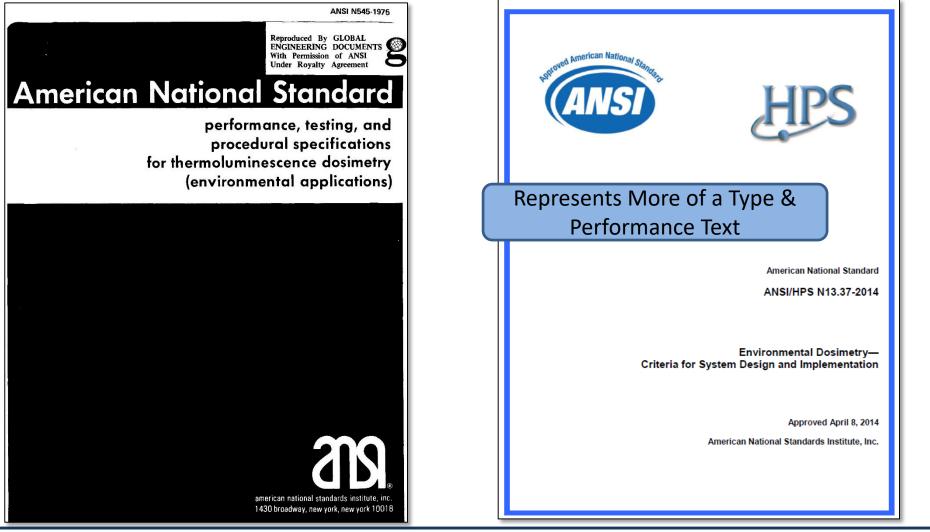


ISO 17025 - General requirements for the competence of testing and calibration laboratories



IEC 62387 & ISO 12794 Passive Dosimetry Standards

INTERNATIONAL STANDARD	IEC 62387 Edition 1.0 2012-12		INTERNATIONAL STANDARD	ISO 12794 First edition 2000-02-15
NORME INDEXALORATES AND	nd beta radiation simétriques intégrés		Nuclear energy — Radiation p Individual thermoluminescen for extremities and eyes Énergie nucléaire — Radioprotection — Dosimeter thermoluminescents pour yeux el extremités	es individuels
ssive integrating dosin for personal and envi nitoring of photon and	ronmental I beta radiatio	Lie ISI Sir	ence State Corp. LOF ROTUNDA 1 State Corp. LOF ROTUNDA 2 State Corp. State Cor	Reference number ISO 12794-2000(E) Э ISO 2000



PTB Type Test Process

ANSI Performance Testing N545-1975 & N13.37-2014

The Future of Passive Dosimetry

 Technology Developments Dosimetry Material Refinement to Create Near Perfect Characteristics Enhanced Neutron Dosimetry (OSL) Modular & Scalable Hardware Extremity & Eye Dosimetry (OSL) Linear Algorithms or No Algorithm 	 Disruptive Technology Many New and Innovative Technologies Could Displace Current Technologies Many Never Escape the Lab / Region Some Unable to Scale-Up Costs per Dose Possibly Higher Solutions to Pulsed Fields – Active Dos. Technology Fusion 		
 Commercial Competition Forces Prices Down New Vendors Entering the Market Some Vendors Exit The Market Requirements & Standards Drive	 Final Thoughts OSL & TLD Will Be The Workhorses for		
Solutions Active & Active-Passive Dosimetry Could	the Foreseeable Future Active-Passive Technology Will Serve		
Replace Passive If Overall Costs &	Specific Segments Active Dosimetry Complimentary To		
Regulations Change	Passive Dosimetry Cost Will Prevail With All Else Being Equal		

