

A COMPARISON OF COMPUTATIONAL APPROACHES FOR THE DETECTION OF GAMMA-EMITTING RADIONUCLIDES IN FOODS

Clarence J. Rolle Office of Regulatory Affairs (ORA) Winchester Engineering Analytical Center (WEAC) Food and Drug Administration (FDA) 25th Annual Council on Ionizing Radiation Measurements and Standards Meeting March 28th, 2017

Food Emergency Response Network

- Interest : Quick and sound food safety decision-making in the event of nuclear or radiological emergency
- **Objectives:** Develop rapid and high-throughput screening methods in support of large-scale emergency response and consequence management

Increase radioanalytical capability and sample-surge capacity with greater geographic coverage and operational flexibility

Approach: Communicate and collaborate with state laboratories in method development, validation, and standardization

Provide resources, trainings, and proficiency tests

Deliverable: Full range of radioanalytical capability for detecting all radionuclides concerning food safety Ability of providing sufficient & reliable analytical results to enable prompt decisionmaking on food safety

Public Health Impact

Radiation in Foods

- Long-term consumption of food contaminated with high-level radioactivity increases health risk from exposure to radiation.
- Iodine 131, a gamma & beta-emitting radionuclide, can rapidly incorporated into milk and accumulate in thyroid if ingested. It increases risk of thyroid cancer, particularly in young children who consume large amount of milk products.
- Cesium 137, another gamma & beta-emitting radionuclide, behaves like potassium and can appear in meat. Cesium-137 has a half-life of 30 years, which can cause long-term food contamination. Prolonged exposure to Cs-137 can lead to a wide range of cancers.
- Strontium 90, a beta-emitting radionuclide, has chemical similarity to calcium, which can accumulate in bone. A direct linkage between strontium 90 accumulation and bone cancer and leukemia has been found.

Radionuclides of Concern

Radionuclide	Principal Emission	Radionuclide	Principal Emission	Radionuclide	Principal Emission
241Am 238Pu 239Pu 240Pu 210PO 242Cm 243Cm 243Cm 244Cm 252Cf 226Ra 237Np 228Th 230Th 230Th 232Th 234U	α α α α α α α α α α α α α α α α	137Cs 60Co 153Gd 192Ir 75Se 170Tm 169Yb 141Ce 144Ce 57Co 134Cs 125J 129J 131J	γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ	⁸⁹ Sr ⁹⁰ Sr/ ⁹⁰ Y ¹⁴⁷ Pm ²²⁷ Ac ³ H ³² p ²⁴¹ Pu ²²⁸ Ra ⁶³ Ni ⁹⁹ Tc ²⁰⁴ Tl ¹⁴ C ⁸⁵ Kr ⁶⁸ Ge ⁵⁵ Fe	β β β β β β β β β β β β β β β
235U 238U	α α α	99Mo 103Pd 103Ru 106Ru 198Au 109Cd 99mTc 140Ba 140La 65Zn 85Sr 7Be	γ γ γ γ γ γ γ γ γ γ	Sources o Natural Weapor Nuclear Mining Space E Nuclear Waste E	n Tests Power Industries xplorations Medicine

Detector System & Sample Preparation

Front of Detector

Sample & 400-mL Container

FDA

5

Back of Detector

www.fda.gov

CURRENT APPROACH

Gamma Spectrometry

Can be used to identify and quantify radionuclides that are gamma emitters

Advantages

Non-destructive technique Multi-radionuclide analysis

For Identification – Energy calibration Standard sources containing multiple radionuclides with known photon energies

For Quantification – Efficiency calibration Requires the equivalent volume geometry between the calibration standard and the test samples

Computational Approach

Software packages have been developed and can be applied to calculate counting efficiency without using calibration standards

Lower Cost than Source-based Calibration

Purchasing Sources – For calibrations Disposal of Sources – Radioactive Waste Replacing Sources – Radioactive Decay

Time

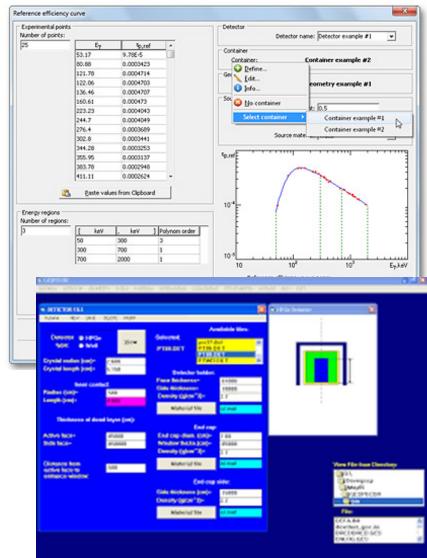
Less Labor Intensive - Easier to match the sample for calibration

Flexibility

Limited amount of sample Unusual material composition

Software Packages For Efficiency Calculations

FDA

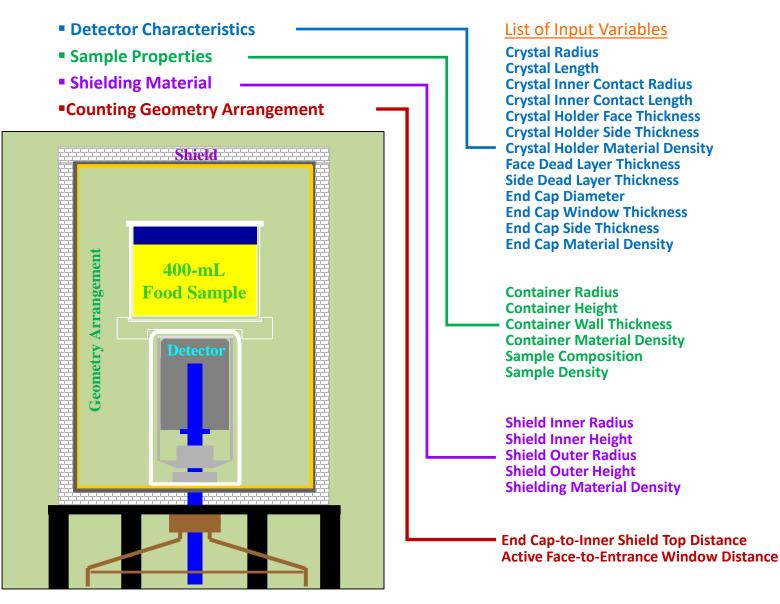

ANGLE combines advantages of both absolute (methods – minimizing potential for systematic errors in the former and reducing practical limitations of the latter.

GESPECOR

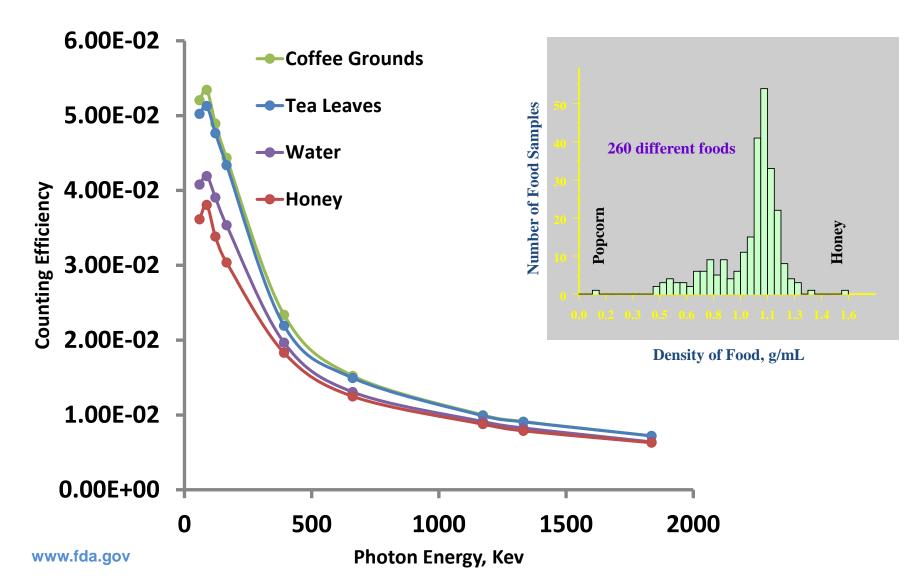
The software is very flexible and allows the user to change many variables, including the detector, shield and geometry all from a friendly user interface.

LABSOCS/ISOCS

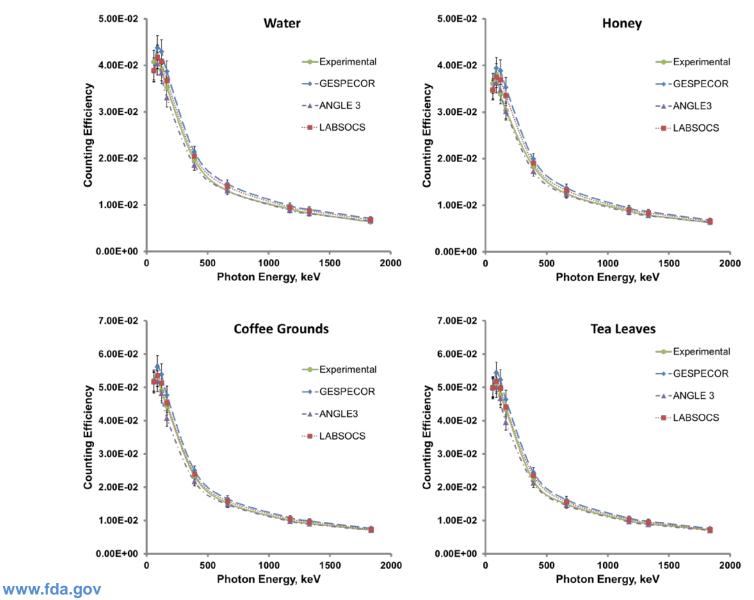
The difference between LabSOCS and other available mathematical calibration packages is that the detector used to perform activity measurements is initially characterized by the manufacturer.

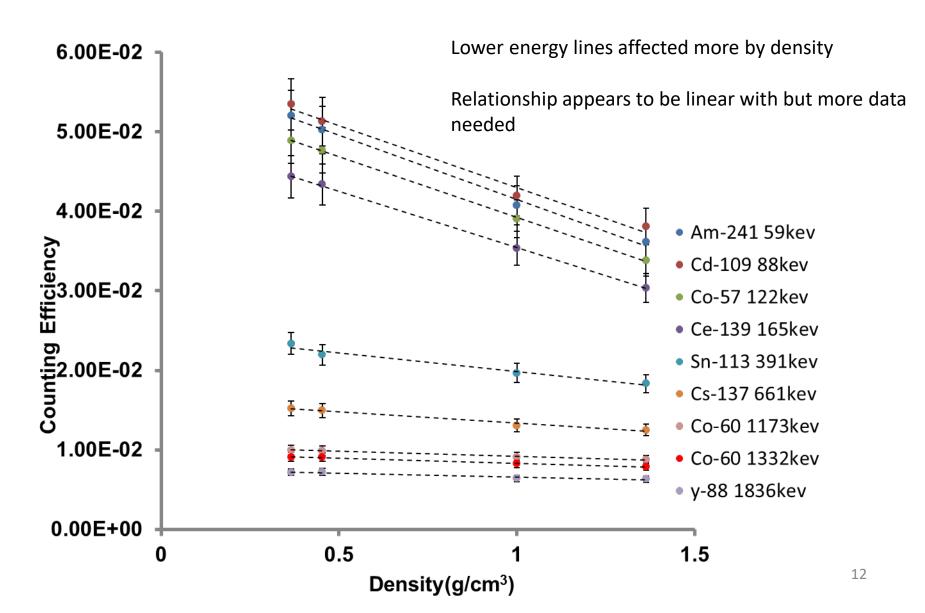


Computational Setup


9

Computational approach requires descriptive inputs with regard to:


The Effect of Food Density on Efficiency


Results- Sample Density

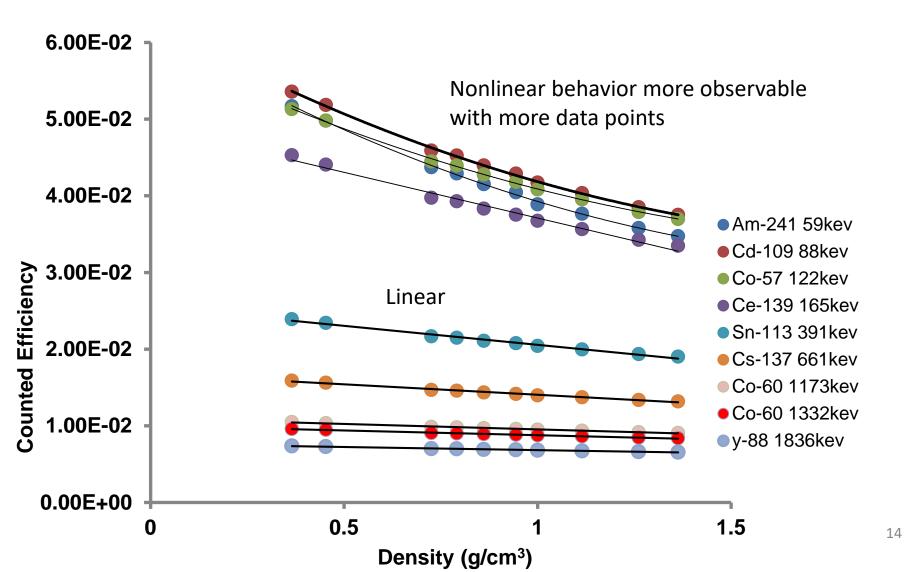
Effective at reproducing experimental results and limit cost

FDA

Comparison of Measured Efficiencies with Change in Density

Comparison of Measured Efficiencies with Change in Density

Food Product	Density	Elemental Analysis
Coffee	0.365	C% 57.00 H% 7.00 O% 35.00 N% 1.00
Tea	0.453	C% 55.59 H% 6.10 O% 35.16 N% 3.02
		S% 0.07 P% 0.07
Water	1	H% 11.19 O% 88.81
Honey	1.363	C% 40.00 H% 7.00 O% 53.00


Organic Solvent	Density	Elemental Analysis
Triethylamine	0.7255	C% 71.22 H% 14.94 N% 13.84
Acetone	0.791	C% 62.04 H% 10.41 O% 27.55
DMF	0.944	C% 49.30 H% 9.65 O% 21.89 N% 19.16
Glyme	0.9637	C% 53.31 H% 11.18 O% 35.50
Ethylene Glycol	1.115	C% 38.70 H% 9.74 O% 51.55
Glycerol	1.261	C% 39.13 H% 8.76 O% 52.12

Principle components in food are C, H, O, N

Using organic solutions to mimic food components, while improving range of densities that can be studied

Simulate radioactive solutions to minimize generating waste.

Comparison of Computed Efficiencies with Change in Density

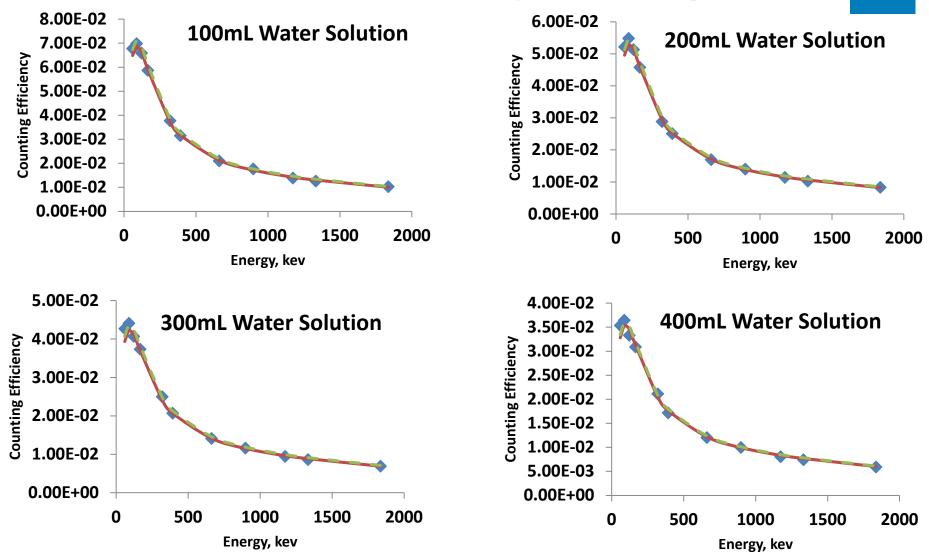
Results of Food Spiked With ¹³⁷Cs and ⁶⁰Co

Spiked Activity: The amount of radioactive material added to the food sample.

Measured Activity: The activity determined by measurement of the sample using a water based efficiency

Corrected Activity: The activity determined in sample using computed efficiencies with density corrections

Food Product	Density	lsotope	Spiked Activity (Bq/g)	Measured Activity (Bq/g)	%error	Corrected Activity (Bq/g)	%error
Water	1	¹³⁷ Cs	0.64	0.66	3.29	0.62	2.93
		⁶⁰ Co	1.03	0.96	6.98	0.98	5.41
			1.04	0.95	8.41	0.98	6.00
Coffee	0.365	¹³⁷ Cs	4.09	4.76	16.45	3.94	3.55
		⁶⁰ Co	6.61	6.87	3.99	6.32	4.33
			6.61	6.70	1.34	6.72	1.60
Теа	0.453	¹³⁷ Cs	3.33	3.83	15.10	3.21	3.63
		⁶⁰ Co	5.38	5.51	2.46	5.16	4.08
			5.38	5.41	0.65	5.08	5.47
Unknown Syrup	1.15	¹³⁷ Cs	0.18	0.16	10.68	0.19	1.68
		⁶⁰ Co	0.37	0.35	5.26	0.35	7.01
Honey	1.363	¹³⁷ Cs	0.48	0.47	1.67	0.47	1.91
		⁶⁰ Co	0.77	0.70	10.08	0.74	4.20
			0.78	0.70	9.42	0.74	3.94



Summing Corrections for ¹³³Ba and ¹³⁴Cs in Water

Nuclide	Known Activity	Uncorrected Activity (Bq/g)	% Diff.	LABSOCS Activity (Bq/g)	%Diff.	Gespecor Activity (Bq/g)	%Diff.	Angle Activity (Bq/g)	%Diff.
¹³³ Ba	321.3	270	16.0%	330	2.7%	303	5.7%	300	6.6%
¹³⁴ Cs	232.2	204	12.2%	225	3.1%	220	5.3%	223	4.0%

Our regulatory programs require a measurement accuracy to be within ±10%. Efficiency computations with a 2% uncertainty assigned to each of the detector and sample parameters showed that a combined effect on counting efficiencies from all uncertainty components is on the order of 6%.

Results – Sample Height

FDA

Fission Products of ²³⁵U in 400mL of Water

Radionuclide	Known, Bq/kg	±2s	Experimental Bq/kg	Diff, %	Labsocs Activity Bq/kg	Diff, %	Angle 3 Bq/kg	Diff, %	Gespecor	Diff, %
Ba-140	2.43E+04	7.54E+02	2.47E+04	1.55%	2.44E+04	0.31%	2.36E+04	2.98%	2.18E+04	10.38%
Ce-141	1.91E+04	5.33E+02	1.94E+04	1.83%	1.88E+04	1.32%	1.81E+04	4.99%	1.59E+04	16.54%
Ce-144	2.88E+03	1.27E+02	3.13E+03	8.56%	3.03E+03	5.10%	2.98E+03	3.36%	2.56E+03	11.21%
Cs-137	9.14E+01	3.75E+00	9.47E+01	3.59%	9.42E+01	3.04%	9.16E+01	0.20%	8.45E+01	7.57%
I-132	1.82E+03	8.18E+01	1.81E+03	0.39%	1.84E+03	1.26%	1.72E+03	5.35%	1.69E+03	7.00%
La-140	2.77E+04	7.48E+02	2.79E+04	0.68%	2.76E+04	0.40%	2.70E+04	2.57%	2.47E+04	10.87%
Mo-99	1.33E+03	4.14E+01	1.32E+03	1.11%	1.31E+03	1.86%	1.27E+03	4.86%	1.22E+03	8.60%
Nb-95	5.17E+03	1.55E+02	5.16E+03	0.29%	5.11E+03	1.25%	4.99E+03	3.57%	4.59E+03	11.30%
Nd-147	8.34E+03	4.33E+02	7.96E+03	4.51%	7.97E+03	4.40%	7.53E+03	9.67%	6.69E+03	19.75%
Ru-103	8.50E+03	2.72E+02	8.29E+03	2.49%	8.23E+03	3.20%	7.99E+03	6.02%	7.38E+03	13.20%
Tc-99m	1.40E+03	4.91E+01	1.49E+03	6.22%	1.45E+03	3.37%	1.39E+03	0.91%	1.22E+03	13.03%
Te-132	1.85E+03	6.47E+01	1.73E+03	6.42%	1.79E+03	3.18%	1.76E+03	4.80%	1.54E+03	16.70%
Zr-95	1.29E+04	4.53E+02	1.31E+04	1.26%	1.30E+04	0.49%	1.27E+04	1.83%	1.17E+04	9.56%

Conclusions

- Computational Methods effective at predicting efficiencies over a range of densities
- Software packages are capable of delivering high throughput, accurate results in an emergency scenario
- Simulating radioactive solutions can help minimize generating waste saving cost of preparing samples and improve response time in the case of an emergency.

Acknowledgements

Winchester Engineering & Analytical Center (WEAC)

Director: Brian Baker

Preceptor: Stephanie Healey

Dr. Zhichao Lin

Commissioner's Fellow Program

Jeffery Rexrode

Susan Gantz

Kyle Boyd

