

Presentation to: Council on Ionizing Radiation Measurements and Standards

Challenges in the Conformal Testing of Dosimeters against Prompt Neutron and Gamma Exposures

Dr. Chad McKee and Dr. Chad Weaver Physicists Joint Project Leader, Radiological and Nuclear Defense

27 March 2017

20170327_CIRMS_Weaver Distribution Statement A: Approved for public release; distribution is unlimited.

Releasability

- All information in this presentation are from open and public sources
- This presentation is very general and does NOT address any test results
- If you are DOD (or US Govt) and would like more information, please contact us

Set of 5 Soviet personal radiation dosimeters DP-24 Image from: http://www.soviet-power.com/detail.php?pid=45138

Focus of Talk

Focus

The Army needs to be able to measure the radiation dose to the soldiers on the battlefield, to include the nuclear battlefield.

Ensuring our dosimeters have this capability present challenges:

- Mission is somewhat limited to the military
- Specialized equipment
- Lack of clear traceability to standards
- **Operational realities**

Team

Joint Project Leader for Radiological and Nuclear Defense

- Dr. Chad McKee
- Dr. Chad Weaver

With input from:

- Frank Andrews, WSMR
- Dr. T. Mike Flanders, WSMR
- Bill Harris, CHP, Army Dosimetry Center
- Gabe Lockwood, Army Dosimetry Center
- Dr. Paul Blake, CHP, DTRA

"AN/PDR-75A Coming Soon." The Preventive Maintenance Monthly, Issue 727, June 2013.

Distribution Statement A: Approved for public release; distribution is unlimited

Outline

- Motivation
- Dose Range
- Neutron / Gamma Ratio
- Spectrum
- Sampling
- Measurements
- Standards
- Traceability
- Pertinence to the Field
- Risks
- Path Forward

PDR-75 and DT-236 Image from: http://www.globalsecurity.org/military/systems/ground/images/pdr75.jpg

Motivation

• Why bother measuring prompt? Isn't the mushroom cloud the end of the battle?

Hiroshima City, 6 August 1945 I456742mage from: http://apjjf.org/2011/9/43/Yuki-Tanaka/3623/article.html

Motivation

For weapons under 20 kT, radiation is one of the primary drivers for casualties.

Comparison of Weapons Effects (Radii of Effects in Kilometers for Airburst) FM 8-10-7, Health Service Support in a Nuclear, Biological, and Chemical Environment, 22 April 1993.

THERMAL (50% INCIDENCE OF 2ND-DEGREE **BURNS TO BARE SKIN, 10 KM** VISIBILITY)

NUCLEAR RADIATION (1,000 cGy)

BLAST

20170327 CIRMS Weaver

Distribution Statement A: Approved for public release; distribution is unlimited.

Motivation

Enhanced Radiation Weapons (Neutron Bomb)

AND BIOLO

Effects of Detonation: Standard nuclear weapon

Effects of Detonation: Enhanced nuclear weapon

http://news.bbc.co.uk/2/hi/science/nature/395689.stm

Dose Range

- Detection range PDR-75A
 - Gamma from 0.01 to 3000 cGy
 - Neutron from 0.3 to 3000 cGy

USACHPPM Tech Guide 244, *The Medical NBC Battlebook*, May 2000.

Neutron / Gamma Ratio

• Neutron/Gamma Ratio

– Any

0.1	4.6	0.82	360 meters
1.0	3.0	0.75	650 meters
10.0	1.6	0.62	1040 meters
100.0	0.47	0.32	1500 meters
1000.0	0.042	0.04	2280 meters

Typical Neutron-to-Gamma and Neutron Dose-to-Total Dose Rates USACHPPM Tech Guide 244, *The Medical NBC Battlebook*, May 2000.

Spectrum

Gamma

AND BIOLO

Neutron

Glasstone and Dolan, The Effect of Nuclear Weapons, 1977.

Spectrum

DTRA provides updated spectrum information

Type of Spectrum	Neutron Source	Photon Source
"Little Boy"-type spectrum	White, Whalen & Heath 2001	White, Whalen & Heath 2001
"Fat Man"-type spectrum	White, Whalen & Heath 2001	White, Whalen & Heath 2001
Unshielded device spectrum	Gritzner, et al. 1976 (EM-1 Fission)	Gritzner, et al. 1976 (EM-1 Fission)
Thermonuclear spectrum	Gritzner, et al. 1976 (Low Yield Thermonuclear)	Gritzner, et al. 1976 (Low Yield Thermonuclear)

Suggested spectra for simulation of leakage radiation for a nuclear device. DTRA-TR-17-026, *Publicly Released Prompt Radiation Spectra Suitable for Nuclear Detonation Simulations*. March 2017.

20170327_CIRMS_Weaver Distribution Stateme

Spectrum - Neutron

Neutron spectra for from fission sources. DTRA-TR-17-026, Publicly Released Prompt Radiation Spectra Suitable for Nuclear Detonation Simulations. March 2017.

Spectrum - Photon

Photon spectra for from fission sources. DTRA-TR-17-026, Publicly Released Prompt Radiation Spectra Suitable for Nuclear Detonation Simulations. March 2017.

AND BIOLO

Measurements - FBR

Fast Burst Reactor Survivability, Vulnerability and Assessment Directorate(SVAD) Nuclear / DEW / E3/ Environmental Facilities and Capabilities. 29 July 2009. Approved for Public Release.

- White Sands Missile Range Fast Burst Reactor (FBR)
 - Unmoderated and unreflected cylindrical assembly of uranium and molybdenum alloy
 - Produces high-yield pulses of microsecond width, as well as long-term, steady state radiation
 - Closely simulate the neutron radiation environment produced by a fission weapon
 - Similar to "Unshielded Device Spectrum" [Gritzner et al. 1976 (EM-1 Fission)]

Measurements - FBR

Fast Burst Reactor (FBR) Survivability, Vulnerability and Assessment Directorate(SVAD) Nuclear / DEW / E3/ Environmental Facilities and Capabilities. 29 July 2009.

Approved for Public Release.

- ★ System / Piece-part Level
- Burst and Steady-State (Power) Modes
- **\star** Burst Mode: Up to 6.5E13 n/cm² of 45µs width
- ★ Steady state Mode: Up to 8 kW
- Gamma enhanced environment uses Cd loaded poly to produce gamma dose rates up to 10⁸ RAD(Si) during pulse

Fast Burst Reactor (FBR) Technical Data Survivability, Vulnerability and Assessment Directorate(SVAD) Nuclear / DEW / E3/ Environmental Facilities and Capabilities. 29 July 2009. Approved for Public Release.

20170327_CIRMS_Weaver Distrib

Distribution Statement A: Approved for public release; distribution is unlimited.

Measurements - Neutrons

Neutron Spectrum of the WSMR FBR Sparks, Mary Helen and T. Micheal Flanders, *A Re-Evaluation of the Reference Environment at the WSMR Fast Burst Reactor*. EPJ Web of Conferences 106, 01006 (2016).

20170327_CIRMS_Weaver Distribution Statement A: Approved for public release; distribution is unlimited

Measurements - Gamma

WSMR Gamma Sources

- Physics International 538
 (PI-538) Flash X-ray machine
- Gamma Radiation Facility (GRF)

• Army Primary Standards Lab

- Beam codes
- Co-60
- Cs-137

Gamma Radiation Facility (GRF) Survivability, Vulnerability and Assessment Directorate(SVAD) Nuclear / DEW / E3/ Environmental Facilities and Capabilities. 29 July 2009. Approved for Public Release.

Sampling

 Test each lot delivered using the DCMA (Defense Contract Management Agency) tables

ZERO-BASED ACCEPTANCE SAMPLING PLAN

"A Indicates that the Entire Lot Must be Inspected"

					Accept	able (Qualit	ty Lev	el (A	QL)						
LOT SIZE	.010%	.015%	.025%	.040%	.065%	.10%	.15%	.25%	.40%	.65%	1.0%	1.5%	2.5%	4.0%	6.5%	10.0%
1-8	A	A	A	A	A	A	A	A	A	A	A	A	5	3	2	2
9-15	A	A	A	A	A	A	A	A	A	A	13	8	5	3	2	2
16-25	A	A	A	A	A	A	A	A	A	20	13	8	5	3	3	2
26-50	A	A	A	A	A	A	A	A	32	20	13	8	5	5	5	2
51-90	A	A	A	A	A	A	80	50	32	20	13	8	7	6	5	4
91-150	A	A	A	A	A	125	80	50	32	20	13	12	11	7	6	5
151-280	A	A	A	A	200	125	80	50	32	20	20	19	13	10	7	6
281-500	A	A	A	315	200	125	80	50	48	47	29	21	16	11	9	7
501-1200	A	800	500	315	200	125	80	75	73	47	34	27	19	15	11	8
1201-3200	1250	800	500	315	200	125	120	116	73	53	42	35	23	18	13	9
3201-10,000	1250	800	500	315	200	192	189	116	86	68	50	38	29	22	15	9
10,001-35,000	1250	800	500	315	300	294	189	135	108	77	60	46	35	29	15	9
35,001-150,000	1250	800	500	490	476	294	218	170	123	96	74	56	40	29	15	9
150,001-500,000	1250	800	750	715	476	345	270	200	156	119	90	64	40	29	15	9
500.001 & Over	1250	1200	1112	715	556	435	303	244	189	143	102	64	40	29	15	9

DCMA Sampling Table.

AN/PRD-75A Image from: jacks.jpeocbd.army.mil/Public/FactSheetProvider.ashx

Standards – ANSI N13.11

Category 1 - Gamma

- Same units (absorbed dose)
- Good overlap for dose range
- Good overlap for energy range
- Does not address pulse duration
- Category 2 Neutron
 - Different units
 - Poor overlap for dose range
 - Good overlap for energy range
 - Does not address pulse duration

Table 1a.	Test categories,	test irradiation ranges,	and tolerance levels
	·	U	

		Test irradiation	Tolerance level (L)		
		range	Deep	Shallow	
I. Accidents, photons A. General (B and C, random) B. ¹³⁷ Cs C. M150		0.05 to 5 Gy (5 to 500 rad)	0.24	No test	
II. Photons/photon mixtures A. General ^a ($\overline{\epsilon} \ge 20 \text{ keV}$; \perp if $\le 70 \text{ keV}$) B. High E (¹³⁷ Cs, ⁶⁰ Co; $\alpha \le 60^{\circ}$) C. Medium E ¹ ($\overline{\epsilon} > 70 \text{ keV}$, $\alpha \le 60^{\circ}$) D. Plutonium specific ^a (see Appendix A, Sec	tion A2)	0.5 to 50 mSv (0.05 to 5 rem)	0.30	0.30	
III. Betas A. General (B and C, random) B. High E (⁹⁰ Sr/ ⁹⁰ Y) C. Low E (⁸⁵ Kr) D. Uranium slab		2.5 to 250 mSv (0.25 to 25 rem)	No test	0.30	
IV. Photon/beta ^b mixtures	Shallow	3.0 to 300 mSv (0.30 to 30 rem)		0.30	
	Deep	0.5 to 50 mSv (0.05 to 5 rem)	0.30		
V. Neutron/photon mixtures ^c A. General (B and C, random) B. ²⁵² Cf + II C. ²⁵² Cf(D ₂ O) + II		1.5 to 50 mSv (0.15 to 5 rem)	0.30	No test	

ANSI/HPS N13.11-2009

Standards – ANSI N13.3

- Uses absorbed dose
- Not as detailed as N13.11
- Leaves field characteristics to the user
 - Energy range
 - Duration
 - Neutron / Gamma ratio
- Not a focus of dosimetry companies and test organizations
- Seems to lack enough participants to justify a separate program for accreditation (i.e., separate from NVLAP)

A recreation of the criticality experiment that Slotin conducted. Image from http://nerdist.com/tickling-the-dragons-tail-the-story-of-thedemon-core/

Table 1. Performance testing criteria of criticality accident dosimeter syste	ems
---	-----

Total absorbed dose range	В
0.1 to 1 Gy (10 to 100 rad)	±50%
1 to 10 Gy (100 to 1000 rad)	±25%
>10 Gy (1000 rad)	Must give positive indication of >10 Gy (1000 rad)

ANSI/HPS N13.3

Traceability

• Traceability of Gamma

- Energy range Good
- Dose range Good
- Pulse Limited

Traceability of Neutron

- Energy range Good
- Dose range Limited
- Pulse Limited

Issues facing WSMR

- Uses calibrated sulfur pellets to measure the output of the WSTC MoLLY-G Fast Burst Reactor (FBR)
- For traceability and calibration of high dose neutron detectors, need fast fission spectrum neutrons with an emission rate near 1x10¹⁰ neutrons per second (n/s)
- NIST ²⁵²Cf source with the highest neutron emission rate is below 1x10⁸ n/s
- Even using the source with the highest emission rate, routine irradiations are becoming prohibitively long, tying up the facility for durations of weeks to as long as several months.

20170327 CIRMS Weaver

Pertinence to the Field

Color footage of atomic bomb tests in Nevada Image from https://nevadastatepersonnelwatch.wordpress.com/2015/11/07/

atomic-soldiers-and-the-nuclear-battlefield/

- Life is not lived on an infinite plan
- Gamma and neutron spectrum changes
- Neutron / gamma ratio changes
- Most exposures will likely be partial body exposures with combined injuries
- Dosimeters likely stored at unit for long time before use

Pertinence to the Field

 Working with DTRA to better understand the radiation incident on the warfighter

Urban horizontal neutron absorbed dose. Figure 5-3 of DTRA-TR-13-045, *Monte Carlo Modeling of the Initial Radiation Emitted by a Nuclear Device in the National Capital Region*, July 2013.

Photon-to-neutron dose for urban and open field. Figure 5-13 of DTRA-TR-13-045, *Monte Carlo Modeling of the Initial Radiation Emitted by a Nuclear Device in the National Capital Region, Revision 1*, August 2016.

Pertinence to the Field

- Dosimeters likely stored at unit for long time before use
- Maintenance and surveillance are key
- Work with Army Dosimetry Center to ensure tactical dosimeters remain accurate

I f the DT-236 dosimeters, NSN 6665-01-043-2191, for the AN/PDR-75 radiacmeter have been sitting for a long time, they may have lost their accuracy. If that's the case, the dosimeters will give readings on the CP-696/PDR-75 computer indicator that are out of tolerance on the low side.

If your dosimeters have been sitting, they may need a simple cleaning to correct the problem. CBRN specialists, to check if a dosimeter needs cleaning, open it following the procedure in Para 2.6 of TM 11-6665-236-12. With the cover removed, see if the phosphate glass is clear. If the glass is clear, the dosimeter doesn't need cleaning. Put it back together.

But a milky white coating on the surface of the glass means the dosimeter base needs cleaning. Place the dosimeter base in a solution of warm water and liquid dishwashing detergent and let it soak for 5-10 minutes. Rinse the dosimeter base in plain water and let it dry completely. If the glass is now clear, reassemble the dosimeter. If it's not clear, repeat the cleaning process until it is clear.

To make sure your dosimeter keeps working correctly, remember to check it annually like the TM says. PS 694

"Dosimeter Been Sitting? It May Need a Bath." *The Preventive Maintenance Monthly*, Issue 694, Sep 2010.

- For neutron, tied to one reactor right now
- Losing traceability for high dose neutrons
- Test sources may not reflect radiation on the battlefield at blast survivable distances

Image from: Google Images

Path Forward

- Continue with rigorous testing
- Continue interaction with industry
- Don't let ANSI forget about us
 - Inclusion in applicable standards
 - Push for more input on ANSI N13.3 or separate standard focused on prompt
- Push NIST for traceability

Image from: http://fsd.trekships.org/operations/images/tricorder-6.gif

Summary

Image from USACHPPM Tech Guide 244, *The Medical NBC Battlebook*, May 2000.

The Army needs to be able to measure the radiation dose to the soldiers on the battlefield, to include the nuclear battlefield.

Challenges exist ensuring our dosimeters have this capability:

- Mission is somewhat limited to the military
- Specialized equipment
- Lack of clear traceability to standards
- Operational realities