OFFICE OF REGULATORY AFFAIRS

Development of Rapid Liquid Scintillation Counting Method for Determination of Tritium in Foods

Debanond Chakraborty, Brian Scherer

Radiological Health Division of Public Health Services New Hampshire Department of Health and Human Services

Zhichao Lin, Stephanie Healey, Joseph Hagan

Analytical Branch Winchester Engineering and Analytical Center U.S. Food and Drug Administration

Presentation to 25th Annual Meeting of the Council on Ionizing Radiation Measurements and Standards National Institute of Standard and Technology (NIST) Maryland, March 2017

Motivations

- To improve routine method used for monitoring discharge of ³H from nuclear power plant into atmospheric, aquatic, and terrestrial ecosystems
- To enable rapid screening of ³H in foods for prompt decision making in the event of a nuclear or radiological emergency
- To compare performance of different LSC instrument technologies for analyzing ³H in foods
- To develop a versatile LSC method for detecting ³H in water and a wide variety of agricultural products
- To determine ³H baseline radiation by examining ³H activity in foods purchased from local market

<u>Objectives</u>

- Evaluate and validate distillation procedure to rapidly extract free-water from different types of foods suitable for analysis of ³H by liquid scintillation counting
- Develop a simple method for rapid and accurate determination of water contents in foods to relate the ³H activity measured in LSC sample to the ³H activity presented in foods
- Determine optimum sample and instrument parameters for high throughput ³H analysis complying with the data quality objectives per regulatory guideline
- Establish a rapid and versatile LSC method suitable for analyzing ³H in a wide variety of foods and agricultural products



About Tritium (³H)

³H decays with a half-life of 12.3 years by emitting a β -particle to form ³He.

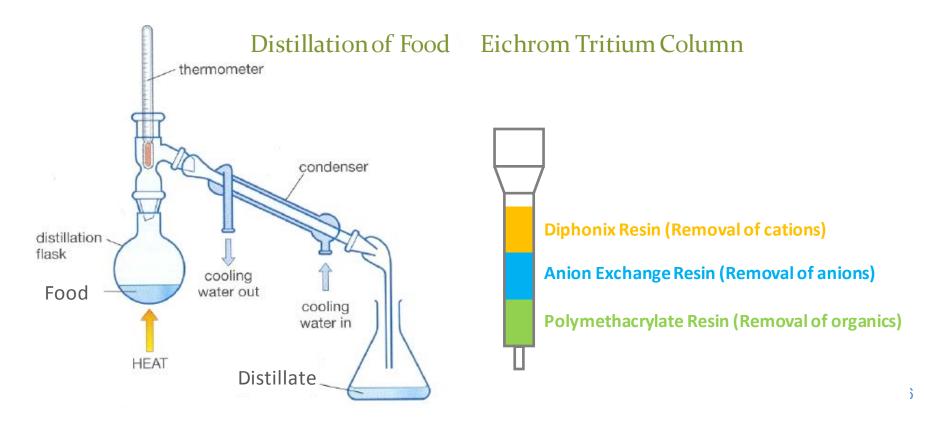
$^{3}H \rightarrow ^{3}He + \beta^{-} + anti-neutrino$

The E_{max} and \overline{E} of β -ray emitted by ³H are only 18 and 6 keV, which are too low for the radiation to penetrate skin. However, it has the ability to incorporate with the DNA and raise cancer risk when unduly inhaled, ingested, or absorbed over a prolonged period. As a result, its presence in potable water and food products must be monitored per regulatory guidelines.

Current Methods Used for ³H Analysis

NH State Lab:

- Uses heating-mantle distillation method validated for various types of water samples
- Based on heating sample to release water then collecting condensed vapor
- Enables quick water
 extraction from sample
- Distills water from sample
 with an open system
- ✓ Accepts large size sample


FDA Rad Lab:

- Uses vacuum distillation method validated for water and various foods
- ✓ Based on slowly extracting free water from foods
- Requires over night extraction
- ✓ Extracts water from sample with a closed system
- ✓ Limits sample size to ~30 grams

Extend Heating-Mantle Method for Food Analysis

Free water in foods is readily separable from matrix by heating and reclaiming by condensation. Some color and organic substances may be found in distillate and cause color/chemical quench that biases low measurement results. Treatment of sample distillate with ³H column may be necessary for certain foods.

Measurement Model

Calculation of ³H concentration in food:

$$C_T = \frac{R_T \times F_W \times 10}{E_T \times W_{LSC} \times F_Q}$$

where,

 C_{T}

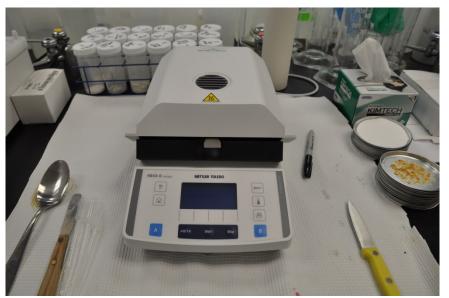
 R_{τ}

 E_{τ}

 F_{O}

10

 W_{LSC}


- = ³H concentration in food at time of sample analysis, Bq/kg
 - = Net sample tritium count rate, cps
- F_W = Food water content, %
 - = Tritium counting efficiency, cps/Bq
 - = Weight of distillate used for LSC counting, g
 - = Quench correction factor
 - = Conversion factor

Determination of Food Water Content

Moisture analyzer was proposed for rapid determination of food water content. To validate its acceptance, the following two methods were used and compared

Moisture analyzer

Quick (~30 min) Simple Slow (over night) Accurate

Vacuum distillation

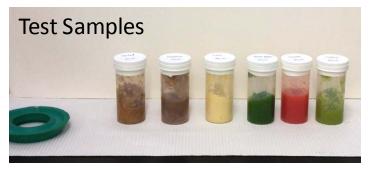
Comparison of Results

Food water contents determined by moisture analyzer and vacuum distillation

		Moisture	Vacuum	
		Analyzer	Distillation	
F <u>ood</u>	Ν	Mean ± 2s		Diff., %
Lettuces	3	96.35 ±0.40	94.95	-1.5
Mushroom	3	91.08 ± 0.34	89.66	-1.6
Pear	3	83.23 ±0.52	83.33	0.1
Cucumber	3	95.66 ±0.17	95.32	-0.4
Zucchini	3	94.24 ±0.06	93.60	-0.7
Green Beans	2	90.73 ±0.18	-	-
Sweet Potato	2	79.00 ± 0.24	-	-
Greek Yogurt	2	76.78 ± 1.78	-	-
Watermelon	2	91.61 ± 0.04	-	-
Whole Milk	2	88.04 ±0.13	-	-
Mustard Green	3	89.25 ±0.34	87.01	-2.6
Chard	3	91.13 ±0.51	92.80	1.8
Grape	3	82.58 ±0.52	82.06	-0.6
Orange	3	86.06 ± 0.34	84.13	-2.3
Fish	3	77.64 ± 0.51	77.25	-0.5
Ground Beef	3	60.11 ± 2.02	61.46	2.2
Ground Pork	3	62.62 ± 1.47	64.77	3.3
Strawberry	3	89.14 ±0.29	88.78	-0.4
Corn	3	69.75 ±0.12	69.16	-0.8
2 <u>% Milk</u>	3	89.15 ±0.11	87.77	-1.6

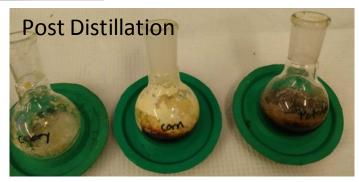
•

• •

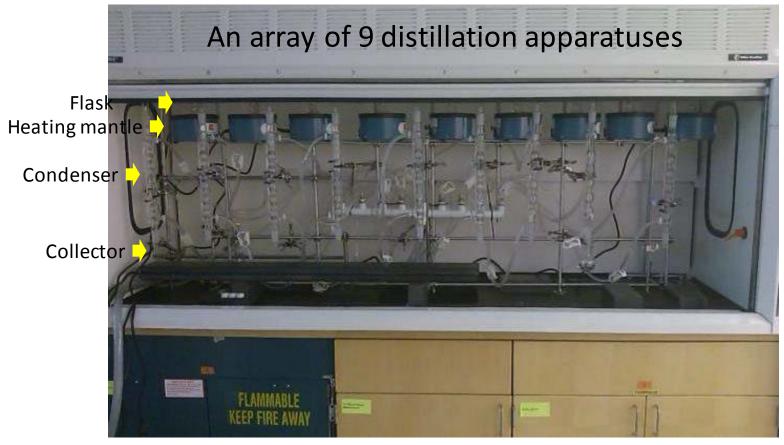

Test Materials and Method Procedure

List of matrix blanks and matrix spikes used

Food	Weight, g	Food	Weight, g
Corn	65.21	Strawberry	65.55
Celery	65.47	Blueberry	65.69
Potatoes	65.27	Green Beans	65.64
Tomato	65.45	Sweet Potato	67.66
Green Pepper	65.18	Fish	60.64
Mixed salad	65.96	Apple	70.40
		Plain Greek Yogurt	66.85
ettyimages Dan Caha Phötography		Watermelon	66.37
		Whole Milk	66.30
		2% Milk	65.26
		Corn	69.28


Preparation of sample for ³H analysis

Each test sample was used entirely

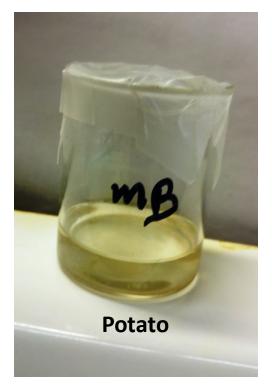

Distillation of foods were found to be mostly straightforward but certain types of foods need additional treatment to obtain clear and colorless distillate before LSC counting.

Distillation System Setup

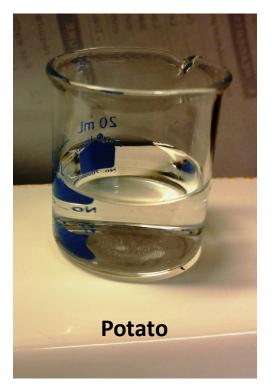
- Capable of distilling 9 samples at a time within one hour
- Assembled inside a fume hood to prevent ³H from escaping into the room

Materials and Method (Cont.)

• Figure of Merit:


$$FOM = \frac{(Efficiency^2). (Volume^2)}{Background}$$

- 8 mL sample + 12 ml of Ultima Gold LLT
- Teflon-coated plastic vial
- Efficiency = 43% (Hidex 300SL)
- Measurements done with and without dark adaptation: the activities for non-dark adapted blank samples were ~10% higher compared to the 2-hour dark adapted ones



Removal of Sample Color/Cloudiness

 Eichrom's Tritium column was used to treat colored and/or cloudy sample distillate to eliminate the need for repeating the distillation, thus expedite the sample preparation

Before treatment

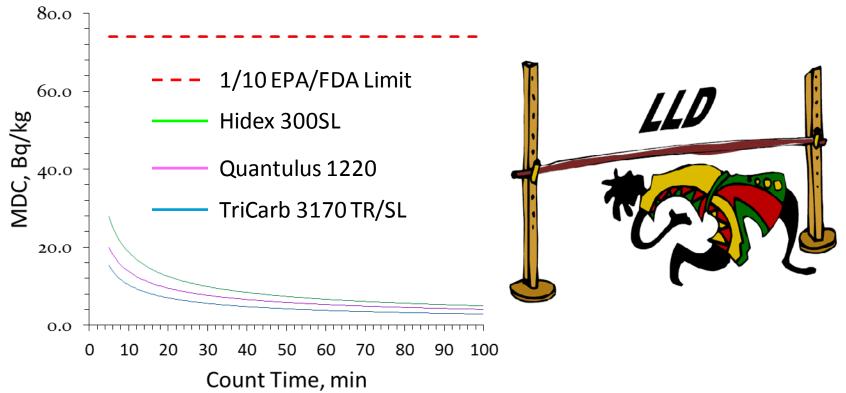
After treatment

Comparison of Instruments

- Liquid scintillation counters used:
 - Hidex 300SL
 - Qunatulus 1220
 - TriCarb 3170 TR/SL
- Count time:
 - 100 min Hidex
 - 60 min Quantulus 1220
 - 60 min TriCarb 3170 TR/SL
- Background suppression:
 - TDCR + Digital shielding + Cooling Hidex
 - Anti coincidence + Pb Shield Quantulus 1220
 - Anti coincidence + BGO Shield TriCarb 3170 TR/SL

TriCarb 3170 TR/SL

Comparison of ³H Matrix Blank Count Rates


Food Matrix	Hidex 300SL, cpm	Quantulus 1220, cpm	TriCarb 3170 TR/SL, cpm
Celery	6.95 ± 0.68	3.20 ± 0.47	0.72 ± 0.41
Potatoes	7.45 ± 0.70	3.03 ± 0.45	0.15 ± 0.37
Tomato	7.02 ± 0.68	3.20 ± 0.47	0.56 ± 0.40
Green Pepper	7.19 ± 0.69	3.30 ± 0.47	0.41 ± 0.39
Mixed Salad	7.07 ± 0.69	3.01 ± 0.45	0.51 ± 0.39
Watermelon	6.58 ± 0.66	3.33 ± 0.48	0.60 ± 0.41
Blueberry	6.05 ± 0.64	3.15 ± 0.46	0.52 ± 0.41
Strawberry	7.05 ± 0.68	3.90 ± 0.52	0.49 ± 0.41
2% Milk	7.73 ± 0.72	3.71 ± 0.50	0.67 ± 0.42
Whole Milk	6.80 ± 0.67	3.25 ± 0.47	0.31 ± 0.39
Corn	6.89 ± 0.67	4.02 ± 0.52	0.15 ± 0.39
Fish	7.33 ± 0.70	3.49 ± 0.49	0.32 ± 0.38
Sweet Potato	7.45 ± 0.70	3.32 ± 0.48	0.25 ± 0.39

All uncertainties are given at 95% confidence level

Estimated Detection Limits vs EPA/FDA Limit

- Sample volume = 8 mL
- Ultima Gold LLT = 12 mL
- Method blank = ~7 cpm Hidex 300SL (Eff = ~43%)
- Method blank = ~2 cpm Quantulus 1220 (Eff = ~29%)
- Method blank = ~0.5 cpm TriCarb 3170 TR/SL (Eff = 21% UltraLow level mode)

Observed Sample Quench Effect

Food Matrix	Quantulus 1220 Quench Index, SQP	TriCarb 3170 TR/SL Quench Index, tSIE
Celery	715.94	349.52
Potatoes	714.50	345.89
Tomato	722.49	368.72
Green Pepper	718.76	360.54
Mixed Salad	723.60	371.24
Watermelon	724.75	375.57
Blueberry	725.44	384.88
Strawberry	723.17	379.12
2% Milk	723.77	376.89
Whole Milk	727.39	384.67
Corn	701.13	311.20
Fish	725.45	383.03
Sweet Potato	698.34	313.27

Abnormal sample quench and instability were observed for foods with high starch contents, which biased the results without polishing the sample distillate with Eichrom tritium column

Comparison of ³H Results

Food Matrix	Known Bq/kg	Hidex Bq/kg	Quantulus 1220 Bq/kg	TricCarb 3170 Bq/kg
Celery	636.18 ± 7.84	603.07 ± 11.49	651.30 ± 17.45	604.96 ± 19.9
Potatoes	638.13 ± 7.87	622.20 ± 10.69	469.24 ± 13.42	468.04 ± 16.0
Tomato	636.37 ± 7.84	651.07 ± 11.86	679.39 ± 17.66	651.48 ± 20.5
Green Pepper	639.01 ± 7.88	657.06 ± 11.79	643.52 ± 16.99	634.18 ± 20.0
Mixed Salad	631.45 ± 7.78	629.69 ± 11.79	676.57 ± 17.86	658.44 ± 20.9
Watermelon	502.04 ± 6.19	457.24 ± 9.49	520.18 ± 15.29	501.52 ± 17.55
Blueberry	253.62 ± 3.13	274.85 ± 7.29	272.22 ± 10.45	264.12 ± 12.36
Strawberry	254.16 ± 3.13	260.63 ± 7.20	278.80 ± 10.71	258.52 ± 12.41
2% Milk	638.22 ± 7.87	619.17 ± 10.84	707.36 ± 17.83	632.82 ± 19.49
Whole Milk	628.21 ± 7.74	626.41 ± 10.79	681.71 ± 17.18	621.47 ± 19.08
Corn	601.19 ± 7.41	563.68 ± 9.73	479.82 ± 13.63	439.65 ± 15.26
Fish	549.48 ± 6.77	634.32 ± 10.37	565.13 ± 14.92	527.35 ± 16.77
Sweet Potato	246.23 ± 3.04	212.43 ± 6.49	211.96 ± 8.82	194.76 ± 10.30

All uncertainties are given at 95% confidence level

Conclusions

- A moisture analyzer is reliable and accurate for determination of food water content needed to relate the ³H activity measured in LSC sample to the ³H activity presented in foods
- The preliminary results were found to be acceptable per FDA's data quality objective
- Considering the sensitivity, rapidness, and simplicity achieved, the method is suitable for high throughput ³H analysis
- The method can eliminate color quench and maintain constant sample quench using Eichrom tritium column when necessary

Conclusions (Cont.)

- Additional study is needed to fully validate the method with a wider range of food matrices
- Up to 36 food samples can be prepared for LCS counting per day
- Despite that the method presented an alternative approach for analyzing ³H in foods, additional studies on the method performance characteristics are still needed before official use

Acknowledgement

We would like to thank Lablogic Systems, Inc. (Hidex) for assisting instrument optimization and use of application software during the study.

Disclaimer

Reference to any commercial materials, equipment, or process does not, in any way, constitute approval, endorsement, or recommendation by the U.S. Food and Drug Administration.

All views and opinions expressed throughout this presentation are those of the presenter and do not necessarily represent views or official position of U.S. Food and Drug Administration.

Thank you! Any questions?

