

Alpha and Auger-Emitting Radionuclides for Therapy

Jonathan Engle

University of Wisconsin, Madison Department of Medical Physics

(& Recently: Los Alamos National Laboratory Chemistry Division Isotope, Inorganic, and Actinides Group)

> CIRMS 2017 Wednesday March 29

"PLEASE FEEL FREE TO INTERRUPT

IF YOU HAVE A QUESTION."

Positron Emission Tomography

Van der Velt, et. al., Front. Oncol., 2013.

SNMMI Image of the Year, 2014. Molecular Imaging.

lsotope	Half-life (t _{1/2})	β ⁺ Branch	β ⁺ Max Energy	Tracer examples
11 C	20.4 min	99.76%	0.96 MeV	PIB, Methionine, Choline
¹³ N	9.97 min	100%	1.19 MeV	Ammonia (¹³ NH ₃)
¹⁵ 0	2.04 min	99.89%	1.72 MeV	Water (¹⁵ OH ₂)
¹⁸ F	109 min	96.9%	0.64 MeV	FDG, Fluoride (¹⁸ F ⁻)
⁸² Rb	1.27 min	96%	3.35 MeV	⁸² RbCl

One Future for Radionuclide Production

How you take your coffee

National-Scale Facilities for Charged-Particle Irradiations and Radionuclide Production

National Scale, Multi-User Infrastructure

The Appealing Landscape

z												230A.m	231 A m	232 A m	233 A m	2 34A m	235 A m	236Am	237Am	238Am	239 A m	240Am	24 I A m	242Am					
									226 P u					226 P u	229 F u	230 P a	231 P a	232 P u	233 Pu	234 P u	235 P a	236Pu	237 P a	236 P u	239 P a	240 P u	24 IPo		
93														225Ng	226Np	227Np	228Np	229Np	230Np	231Np	232Np	233Np	234Np	235Np	236Np	237 Np	238Np	239Np	240 N p
							2170	518A	51 9 Ω	220U	551A	222U	223U	224U	225U	226U	227U	226U	229T	230U	231U	232U	233U	234U	235U	236U	237U	236U	239U
91			212 P a	213 P	214 P s	215 P	216 P	217 P a	216 P a	219 P a	220 P s	221 Ps	222 F s	223 P	224 F s	225 P	226 P a	227 P s	226 P	229 F a	230 P	231 P a	232 F s	233 P s	234 P s	235 P a	236 ₽ ₽	237 P a	236 P s
	209Th	210TP	211Th	515LP	213Th	214Th	215Th	51QLP	217Th	518LJ	219Th	220Th	221Th	222Th	223Th	224Th	225Th	226T	227Th	28Th	229Th	230Th	231Th	232Th	233Th	234Th	235Th	236Th	237Th
89	208Ao	209Ac	210 A e	211 A e	212 A e	213 A e	214 A e	215 A e	216Ac	217 A e	218 A e	219 A e	220 A e	221 A e	222 A e	223 A e	224 A	225 A e	26Ac	227 A e	228 A e	229 A e	230 A e	231 A e	232 A e	233 A e	234Ae	235 A e	236Ac
	207 R a	206Rs	209 R s	210 R s	211 R #	212 R #	213 R a	214 R s	215 R a	216Rs	217 Rs	216Rs	219 Rs	220 R s	221 Rs	222B	223 Ra	224 Rs	225Ra	226R#	227Rs	228Rs	229 Rs	230Rs	231Rs	232Rs	233 Rs	234Rs	235Rs
87	206Fr	207 F r	206Fr	209 F r	210 F r	211 F r	212Fr	213 F r	214Fr	215 F r	216Fr	217 F r	216Fr	219 F r	220Fr	221 F r	222 F r	223Fr	224Fr	225Fr	226Fr	227 F r	228Fr	229Fr	230Fr	231Fr	232Fr	233Fr	
	205R.n	206Rn	207 R n	206Rn	209 R n	210 R n	211 R n	212 R n	213Rn	214 R n	215Rn	216Rn	217Rn	216Rn	219Rn	220 R n	221Rn	222Rn	223 R n	224 R n	225Rn	226Rn	227Rn	226Rn	229 R n	230 R n	231Rn		J
85	204At	205 A t	206 A t	207 A t	206 A t	209 A t	210 A	211 A t	12 A t	213 A t	214 A t	215 A t	216 A r	217 A t	218 A r	219 A t	220 A t	221 A t	222 A t	223 A t	224 A t	225 A t	226 A t	227 A t	226At	229 A t			
	203 P o	204 P o	205 P o	206 P o	207 P o	206 P o	209 P o	210 F o	211 P o	212 P o	213 P o	214 P o	215 P o	216Po	217 P o	216 P o	219 P o	220 P o	221 F o	222 P o	223 P o	224 F o	225 P o	226Po	227 P o				
83	202Bi	203Bi	204Bi	205Bi	20бВі	207 B i	208Bi	209Bi	210Bi	211 B i	212B	213 B i	214Bi	215 B i	216Bi	217 B i	216Bi	219Bi	220Bi	221Bi	222Bi	223Bi	224Bi						
	201 Р ь	202 P 5	203 F b	204 P 5	205 P 5	206 F b	207 F 5	206 P 5	209 P b	210 P 5	211 F	212 P 5	13 P 5	214 P b	215 P b	216 P b	217 P b	216 P b	219 P b	220 P b									
81	20071	201Tl	202T1	203Tl	204Tl	205Tl	206Tl	207Tl	20671	209Tl	2101J	2111J	515LJ	213Tl	214Tl	215Tl	2191J	217Tl											
	199Нд	200Н 2	201HS	202HS	203Hg	204Hg	205Нg	206нg	207Hg	206Нд	209Hg	210Н <mark>2</mark>	211HZ	515Н5	213Hg	214Hg	215Hg	216Hg											
79	196Au	199Au	200 A u	201Au	202 A u	203 A u	204Au	205Au	206Au	207 A u	208Au	209Au	210 A u																
	119		121		123		125		127		129		131		133		135		137		139		141		143		145		N

Curative Appeal in People

Case I: Shrinkage of liver lesions and bone metastases after i.a. therapy with 11 GBq Bi-213-DOTATOC

Case II: Response of multiple liver lesions after i.a. therapy with 14 GBq Bi-213-DOTATOC

Th-232(p,x)Ac-225 for Alpha Radiotherapy

Electron Beam Welded Inconel

> and a state of the second 30

40

- Up to 7 day Irradiations at 230 µA
- \blacktriangleright Ci-scale yields of ²²⁵Ac
- 20x the Current Global Annual Supply

Weidner et al., App Rad Isotop, 2012; Engle et al., Rad Chim Acta, 2014

Isolating ²²⁵Ac from Irradiated Thorium

challenge (require 2 additional columns in the process) ISRS

The Appealing Landscape

- ➢ ²²⁵Ac (²¹³Bi)
 - ²³²Th(p,x)²²⁵Ac
 - ²²⁶Ra(p,2n)²²⁵Ac
 - 226 Ra(n, γ)(n, γ)(n, γ) 229 Th $\rightarrow ^{225}$ Ra $\rightarrow ^{225}$ Ac
 - ²²⁶Ra(γ ,p) or (γ ,2n)²²⁵Ra \rightarrow ²²⁵Ac
- ➢ ²¹²Bi
 - Reactor production of ²²⁸Th, multiple routes
- ²²⁷Th (²²³Ra)
 - Reactor production of ²²⁷Ac, multiple routes from ²²⁶Ra
 - The sole FDA-approved alpha-emitting radiopharmaceutical = ²²³RaCl₂
- ²³⁰Pa/²³⁰U (²²⁶Th)
 - ²³²Th(p,3n)²³⁰Pa
- ▶ ¹⁴⁹Tb
 - Multiple high energy charged particle spallation routes, ALL followed by online mass separation.
- ▶ ²¹¹At
 - ²⁰⁹Bi(α,2n)²¹¹At
 - ${}^{209}\text{Bi}({}^{7}\text{Li},5n) \text{ or } {}^{209}\text{Bi}({}^{6}\text{Li},4n){}^{211}\text{Rn} \rightarrow {}^{211}\text{At}$

Untenable (?) Cost

- National Radionuclide Providers operate under full-cost recovery models.
- Historically, industry takes over when a radionuclide becomes commercially viable.
- Commercial viability is harder to achieve when industry has to duplicate infrastructure at National Scales

Gedankenexperiment

- Current Annual Supply of ²²⁵Ac ~ 1 Ci (140 mCi every 6-8 weeks from ORNL ²²⁹Th cow)
- Supply Increase from IPF + BLIP at Full Capacity ~ x50 ... or about 50 Ci
- ▶ 1 Treatment of ²²⁵Ac-derived ²¹³Bi (the clinically-demonstrated agents) ~ 80 mCi → 10² patients/yr (3 rounds of therapy each)
- > 3 Treatments of ²²⁵Ac-labeled targeting vector per patient at ~ 1 mCi each $\rightarrow 10^4$ patients/yr
- 14M Cancer Patients exist in the US at any one time.
 - So.... What to do...

The Distributed Small-Cyclotron Network of Radionuclide-Producing Facilities

Shoot

With Small Cyclotrons

The Menu du Jour

	<u>Nuclide</u>	<u>t</u> _{1/2}	Reaction	<u>%</u>	<u>Yield (</u> EoSB)	<u>SA</u>	<u>Synthon</u>	<u>Status</u>
	^{34m} Cl ⁴⁴ Sc ⁴⁵ Ti ⁵¹ Mn ^{52g} Mn ⁶¹ Cu ⁶⁴ Cu ⁶⁶ Ga ⁶⁸ Ga ⁷² Ao	^L 1/2 32 m 3.9 h 3.1 h 46 m. 5.6 d 3.4 h 12.7 h 9.6 h 68 m	$\frac{^{36}\text{Ar}(d,\alpha)}{^{44}\text{Ca}(p,n)}$ $\frac{^{45}\text{Sc}(p,n)}{^{54}\text{Fe}(p,\alpha)}$ $\frac{^{52}\text{Cr}(p,x)}{^{60}\text{Ni}(d,n)}$ $\frac{^{64}\text{Ni}(p,n)}{^{66}\text{Zn}(p,n)}$ $\frac{^{72}\text{Ca}(p,n)}{^{72}\text{Ca}(p,n)}$	20 0.3 2 100 5.8 82 26 0.9 28 19 27	4.6 mCi/μA 5.8 47 26 0.3 20 170 31 35	- 1 1 1 1 0.1 25 20 20	$\frac{\text{Synthom}}{\text{Cl}^{-}, \text{ClF}}$ $\frac{\text{Sc}^{3+}}{\text{TiCl}_4}$ $\frac{\text{Mn}^{2+}}{\text{Mn}^{2+}}$ $\frac{\text{ATSM}}{\text{Cu}^{2+}}$ $\frac{\text{Ga-NOTA}}{\text{Ga-NOTA}}$	animal imaging animal imaging animal imaging animal imaging animal imaging patients animals, distribution animal imaging animal imaging
	' ² AS	26 h	² Ge(p,n)	27	102	-	AS ³ '	chem separation
\bigcirc	00Y	15 h	°°Sr(p,n)	10	26	1.5	Y-DOTA	animal imaging
	⁸⁹ Zr	78 h	^{nat} Y(p,n)	100	100	20	Zr-DFO	animals, distribution
\bigcirc	^{95m} Tc	65 d	⁹⁵ Mo(p,n)	16	21	-	Tc-in-Mo	chemistry
			inceptio	n		а	cceptance	e

few users

In-house

distribution

Interesting Auger/Conversion Electron Emitters

- ¹¹¹In, ^{114m}In
- > 125
- ⁹⁴Tc, ^{99m}Tc
- ▶ ^{117m}Sn
- ▶ ^{193m}Pt, ^{195m}Pt
- ▶ ¹¹⁹Sb
- ⊳ ^{58m}Co
- ▶ ⁷¹Ge
- ⁷⁷Br, ^{80m}Br
- ⊳ ⁶⁷Ga
- ▶ ¹⁰³Ru
- ▶ ¹⁴⁰Nd/¹⁴⁰Pr
- ▶ ¹⁶¹Tb

- ⊳ ¹⁶⁵Er
- ⁵⁵Fe, ⁵⁷Fe, ⁵⁹Fe
- ⊳ ¹⁹⁷Hg
- > 201**TI**
- ¹⁵⁸Gd (from n,γ), ¹⁵⁹Gd
- ▶ ¹³¹Cs
- ▶ ⁵¹Cr
- ▶ ¹⁰³Pd
- ▶ ¹⁶⁷Tm
- ▶ ¹⁷⁸Ta

High-LET Augers?

A.I. Kassis, Rad. Prot. Dosimetry 143 (2011) 241.

ICRP publication 92: Relative Biological Effectiveness (RBE), QualityFactor (Q), and Radiation Weighting Factor (wR)

"....For Auger emitters bound to DNA, high RBE values have been reported and a wR of 20 or more appears to be appropriate. For those Auger electron emitters that enter the cell but are not bound to DNA, RBE values between 1.5 and 8 have been found for different endpoints in cell studies (Kassis et al., 1987; Makrigiorgios et al., 1990). Even the less critical case of more uniformly distributed Auger emitters should, therefore, be included in future considerations on a convention for wR values for Auger electron emitters."

Thisgaard (2008)

Nuclear Formation Reaction Data

Nuclear Data Needs and Capabilities for Applications

May 27-29, 2015 Lawrence Berkeley National Laboratory, Berkeley, CA USA

For medical radionuclides:

¹⁹¹Ir(n, γ), ¹⁹²Os(d,n)¹⁹²Ir, ¹³⁰Te(n, γ)¹³¹Te \rightarrow ¹³¹I, ¹³⁰Te(d,p)¹³¹Te \rightarrow ¹³¹I, ¹³⁰Te(d,n)¹³¹I, ¹⁸⁷Re(d,p)¹⁸⁸Re, ¹⁵²Sm(n, γ)¹⁵³Sm, ¹⁵⁰Nd(α ,n)¹⁵³Sm, ¹⁸⁵Re(n,g)¹⁸⁶Re, ¹⁸⁶W(p,n)¹⁸⁶Re, ⁸⁹Y(n, γ)⁹⁰Y, many reactions to produce ¹²⁵I, ⁸⁹Sr(n, γ)⁹⁰Sr, ³²S(d,2p)³²P, multiple reactions esp. fast neutrons to produce ⁹⁹Mo, ²²⁶Ra(γ ,n)²²⁵Fr \rightarrow ²²⁵Ra \rightarrow ²²⁵Ac, ²²⁶Ra(n,x)²²⁵Ac, ²²⁶Ra(η ,x)²²⁷Ac, ¹³¹Xe(p,n)¹³¹Cs, ¹⁵⁴Sm(n,x)¹⁵⁵Eu (fast), ¹³⁰Te(α ,np)¹³²I, ¹⁷⁶Yb(d,n)¹⁷⁷Lu, ⁵³Cr(d,n)⁵⁴Mn, ^{nat}Fe(p,x)⁵²Mn, ⁹⁴Zr(n, γ)⁹⁵Zr \rightarrow ⁹⁵Nb, ^{nat}Br(p,x)⁷⁵Se, ^{nat}I(p,x)¹²⁷Xe, ^{nat}Tm(p,x)¹⁶⁹Yb, ⁹¹Zr(n,p)⁹¹Y, approximatelv 2 dozen (n.v) radionuclides

Ultra Low Energy Electrons (ULEE, 0-20 eV)

- not contained in the International Commission on Radiological Protection (ICRP) nor in the Medical Internal Radiation Dose (MIRD) data bases
- Substantial contribution to the overall absorbed dose and to molecular damage
- Strong correlation between stopping cross section and biological damage (double strand Breaks)

Gaps in Nuclear Structure Data, Weakness in Current Calculation Models

Table 1. Calculated Auger electron yield per nuclear decay for selected medical radioisotopes.

	RADAR ^a	DDEP ^a	Eckerman	Howell ^b	Stepanek ^b	Pomplun ^b	Nikjoo ^b
			& Endo ^a				
	[13, 14]	[15]	[16]	[17]	[18]	[19, 20]	[6]
^{99m} Tc (6.007 h)	0.122	0.13	4.363	4.0		2.5	
¹¹¹ In (2.805 d)	1.136	1.16	7.215	14.7	6.05		
¹²³ I (13.22 h)	1.064	1.08	13.71	14.9		6.4	
¹²⁵ I (59.4 d)	1.77	1.78	23.0	24.9	15.3	12.2	20.2
¹³¹ Cs (9.689 d)	0.4745		10.7				
²⁰¹ Tl (3.04 d)	0.773	0.614	20.9	36.9			

Tibor Kibèdi, Dep. of Nuclear Physics, Australian National University

Summary

Electrons	Alphas
Unestablished	Enormously
Potential	Enouraging,
to Treat	Preliminary Data
Small, Distributed	Large, National
Facilties	Infrastructure

Acknowledgements

Jerry Nickles Todd Barnhart Paul Ellison Steven Graves Hector Valdovinos

Office of Science

Dennis Phillips Mark Garland Joel Grimm Mitch Ferren Cassie Dukes

Eva Birnbaum Meiring Nortier Kevin John Wayne Taylor Kevin Jackman Stepan Mashnik Mark Brugh Justin Wilson Valery Radchenko Michelle Mosby Lauren Marus Joel Maassen David Reass Mike Connors Don Dry Stosh Kozimor Cleo Naranjo Michael Gallegos Dave Thorn Michael Fassbender Maryline Ferrier Justin Wilson Benjamin Stein Veronika Mocko... and many others

Thank you for your kind attention.

Cliché 1. Atmosphère d'argon. Rayons X de 30 kilovolts.

P. Auger Journal de Physique et le Radium, **6** (1925) 205. Les points blancs aux origines des rayons β secondaires manifestent l'existence d'un rayonnement mou.
(Tous ces clichés sont grossis)

(Tous ces cuches sont grossis environ 2 fois),