CIRMS: A Retrospective & Look Forward

Bert M. Coursey Guest Researcher, Standards Services Group National Institute of Standards and Technology

> CIRMS 2017 March 27, 2017

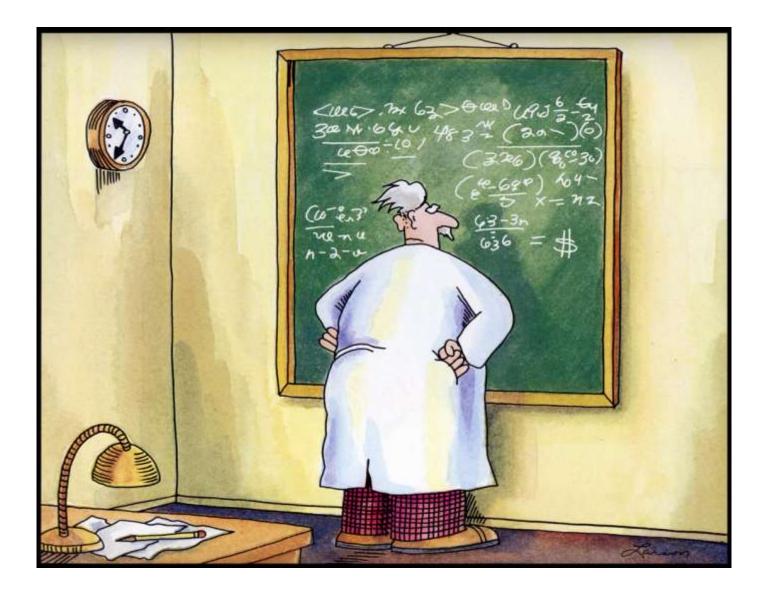
CIRMS 2017

- Brief history on coordination of standards in ionizing radiation
- Founding of CIRMS in 1991 1992
- CIRMS Needs Reports & Measurement Program Descriptions (MPDs)
- Successes and Priorities
- The Future!

CIRMS Early History

- Cannon Report from House of Representatives recommends system of secondary laboratories for NIST
- Major restructuring, reduction in resources in Ionizing Radiation Division
- Letters to NIST from US Council for Energy Awareness, HPS, AAPM expressing concern over NIST support for ionizing radiation programs
- Difficulty of working with many organizations one-on-one leads to idea of a Council
- NIST holds organizational meeting of CIRMS
- Inaugural meeting of CIRMS at NIST October 22 23

Pre-History of CIRMS


1932 Cockcroft-Walton proton accelerator splits lithium nucleus

1935 Irene and Frederick Joliot-Curie produce artificial radioactivity

1950 Commercial production of cesium-137 and cobalt-60 for product irradiations

1955 Vienna, International Atoms for Peace Conference

Einstein Discovers that Time = \$

Livingston curve Energy vs. Time for accelerators

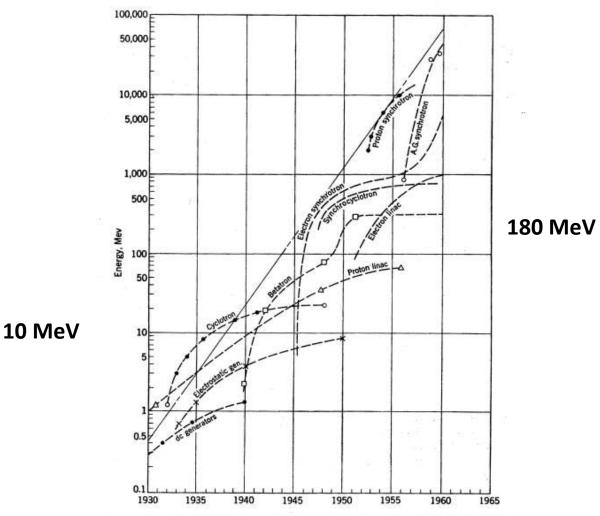
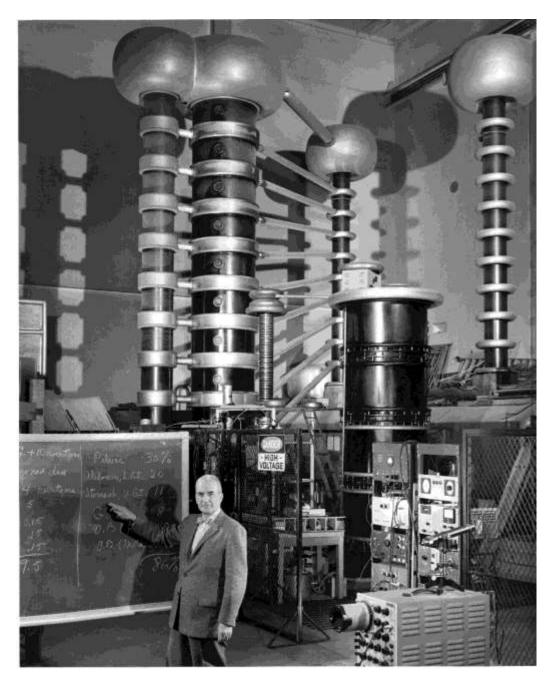



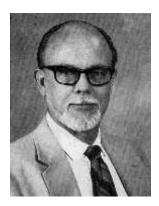
Fig. 1-1. Energies achieved by accelerators from 1930 to 1960. The linear envelope of the individual curves shows an average tenfold increase in energy every six years.

Lauriston S. Taylor

1.4 MeV constantpotentialX-ray generator

A Generation of young US scientists develop the metrology for this new discipline

Martin Berger


Randy Caswell

Wilfrid Mann

Ugo Fano

Herb Attix

Bob Loevinger

John Hubbell

Greta Ehrlich

CIRMS Early History

- **1981** Cannon Report from House of Representatives recommends system of secondary laboratories for NIST
- ¹⁹⁸⁸ Major restructuring, reduction in resources in Ionizing Radiation Division
- **1989** Letters to NIST from US Council for Energy Awareness, HPS, AAPM expressing concern over NIST support for ionizing radiation programs
- **1990** Difficulty of working with many organizations one-on-one leads to idea of a Council
- **1991** NIST holds organizational meeting of CIRMS
- **1992** Inaugural meeting of CIRMS at NIST October 22 23

Pioneers of CIRMS

- 1991 Organizing Committee
 - H. Thompson Heaton
 - William Eckelman
 - Tony Berejka
 - Randall Caswell

- Food and Drug Administration National Institutes of Health RadTech International North America NIST, Chairman
- 1992 1993 First Officers
 - President
 Marshall Cleland
 - 1st Vice President Peter Almond
 - 2nd Vice President R. Thomas Bell
 - Secretary Elmer Eisenhower

Radiation Processing Medical Physics Health Physics Measurement quality assurance

National Needs in Ionizing Radiation Measurements and Standards Measurement Program Descriptions (MPDs)

- Five Needs Reports between 1994 and 2011
- Sixth Needs Report is online
- Now Six Subcommittees of CIRMS S&T Committee
 - A. Medical (Med)
 - B. Public & Environmental Protection (PERP)
 - C. Occupational Radiation Protection (ORP)
 - D. Industrial and Materials Effects (IAME)
 - E. Homeland Security (HS) (from 2004)
 - F. Computational Needs (from 2004)

MPDs Evolve over 15 Years Five Needs Reports

	1994	1998	2001	2004	2011
	I	П	III	IV	V
A. Medical	4	6	3	4	8
B. Public & Environmental Protection	6	5	3	3	3
C. Occupational Radiation Protection	8	7	6	5	4
D. Industrial and Radiation Effects	4	5	4	5	6
E. Homeland Security				3	3
F. Computational Needs				1	1
Totals	22	25	16	21	25

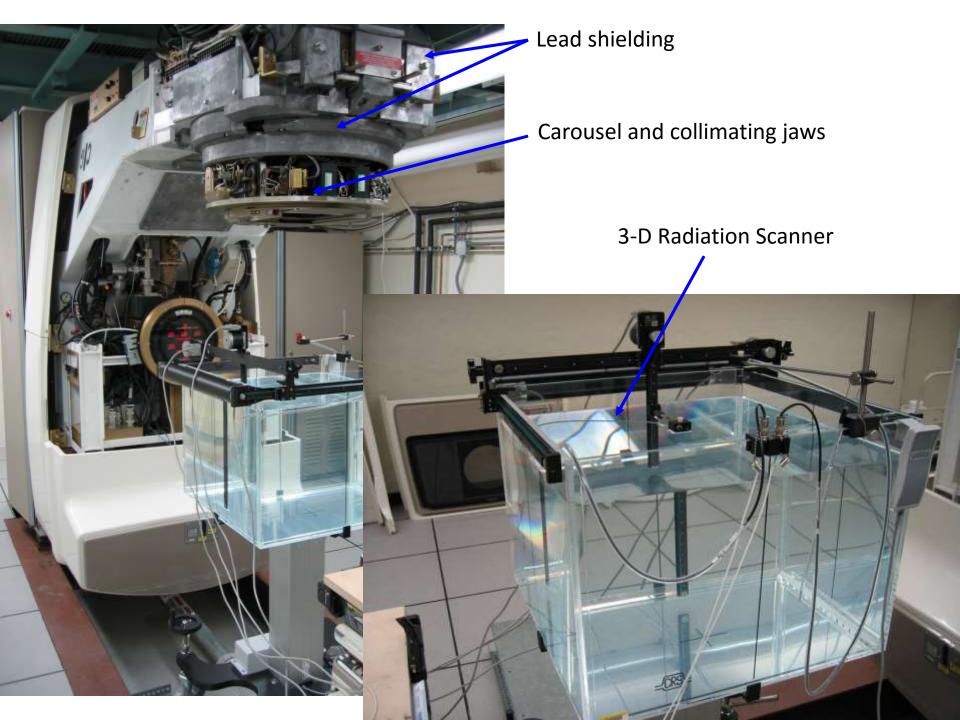
Factors in Successful MPD's

In reviewing progress on the 22 original MPDs, it was found that success depended on three factors:

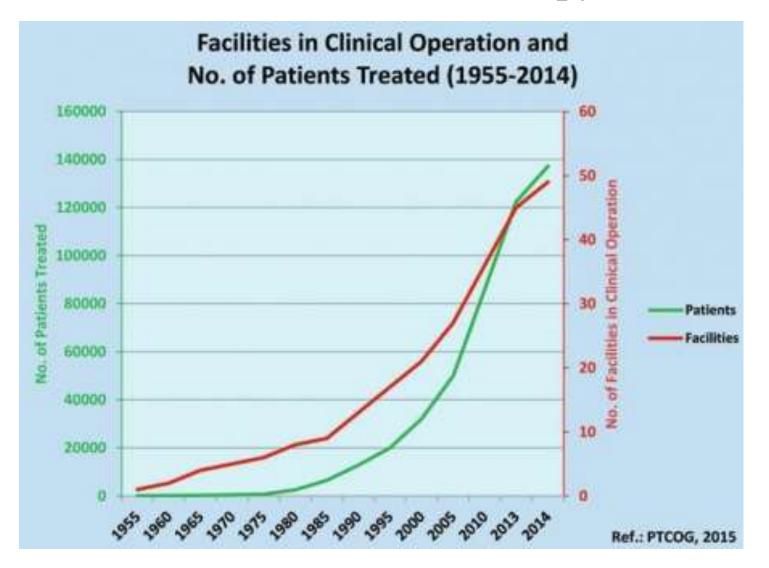
1) programs that moved the fastest involved three or more institutions with a strong need for the technical work.

 a focus workshop organized by one of the subcommittees was very effective in forging agreements that could advance the work. (Thirteen focused workshops were held over the last four years.)

3) a roadmap or timeline that established milestones for the collaborators was most effective in keeping the project on track


Medical Subcommittee MPDs Successes & Priorities

Successes


Standards for mammographic x-rays Calorimetry for absorbed dose to water standards for cobalt-60 Standards for low-energy brachytherapy seeds Installation of clinical linac for photon and electron dosimetry Installation of PET/CT scanner for diagnostic imaging Development of TDCR and CNET for LS standardizations

Priorities

Standards for proton therapy Standards for radiobiology Standards for small fields for external beam therapy

Medical Subcommittee MPD Standards for Proton Therapy

Radiation Protection & Homeland Security

Successes

Commissioning new cesium-137 calibration range for gamma-ray calibrations Validation of methods for irradiating contaminated mail Development of suite of ANSI N42 standards for radiation detectors Development of suite of ANSI N42 standards for x- and gamma-ray inspection Development of reference materials for nuclear forensics

Priorities

Measurement and Calibration for Surface Contamination Monitoring Traceability for High Energy Photon Dosimetry for Non-Intrusive Inspection Systems

Traceability of Neutron Cross Sections, Measurements, and Detector Development

11TH ANNUAL MEETING COUNCIL ON IONIZING RADIATION MEASUREMENTS AND STANDARDS

CALL FOR PAPERS

CIRMS 2002

Traceability for Radiation Measurements and Standards OCTOBER 21-23, 2002

National Institute of Standards and Technology Technology Administration U.S. Department of Commerce

CIRMS 2002 Sponsors

AEA Technology Amersham Health **Best Medical International Bristel-Myers Spaibb Medical Imaging** Bruker BioSpin Goldant **ICN Worldwide Dosimetry Service** International Specialty Products **IBA - Ion Beam Applications** K & 5 Associates Londauer MDS Nordien **WGP Instruments** Nodetron **Rodiance Medical Systems** Saint-Gabain Crystels & Detectors Theragenics American Association of Physicists in Medicine American College of Rediology **ARC Semersdarf Research** FDA Center for Devices & **Rodialogical Health Goorgin Tech Neely Nadam** Research Center Illinois Department of Nuclear Safety Kent State University Les Alemes National Laboratory National Institute of Stundards & Technology National Physical Laboratory, UK **Paufic Northwest National Laboratory** Physikalisch-Technische Bundesonstalt University of Notre Dame Radiation Loberatory US Army Primery Standards Laboratory US Department of Energy US Nedeat Regulatory Commission

Sessions on RDD & Nuclear: Standards and Measurement for 1st Responders

Federal State Local emergency planners

Standards organizations Manufacturers Testing laboratories

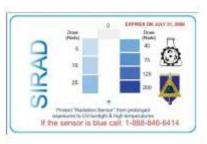
http://www.cirms.org

Radiation Detection Equipment for Detect/Prevent and Respond/Recovery

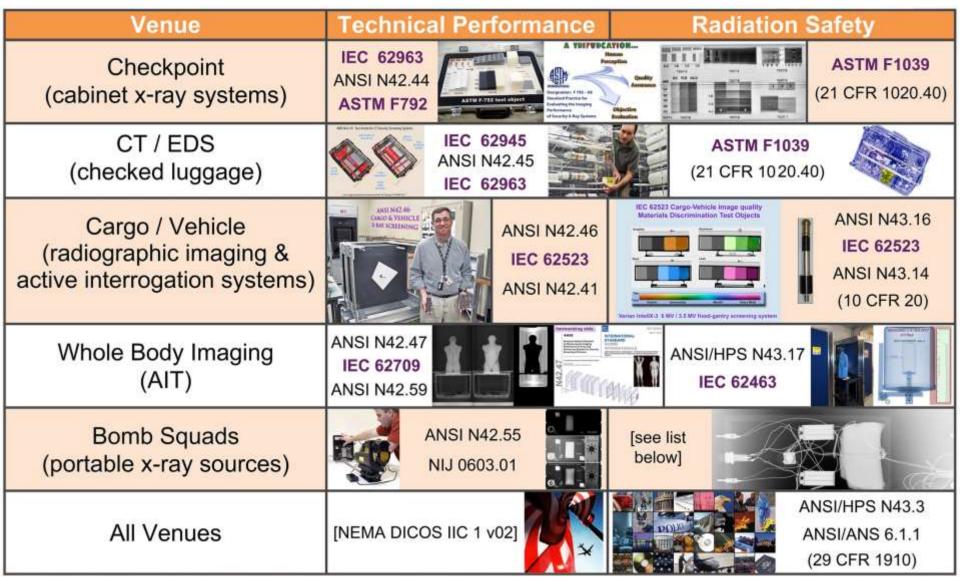
Radiation Portal Monitors

Radiation Pagers

Radioisotope Identifiers



Survey Meters


Electronic Personnel Dosimeters

Radiochromic Passive Dosimeters

National and International Standards for X-Ray and Gamma-Ray Inspection

Industrial & Materials Effects (IAME)

Successes

Development of alanine-EPR dosimetry service

Development of MIRF accelerator for radiation effects studies

EPR measurements for biological dosimetry

Development of radiochromic film dosimetry for radiation beam and field mapping

Industrial & Materials Effects (IAME) Subcommittee MPDs

Active MPDs

Roadmap to Resource Gammacell 220 Irradiators Low Alpha Standard Radiation Hardness Testing and Mixed-Field Radiation Effects Medical Device Sterilization Pollution Prevention Food Irradiation Low-voltage Electron Beam and X-ray Dosimetry (80 to 300 KeV) Traceability of Neutron Cross Sections, Measurements

Proposed MPD's

High-energy Electron Beam Dosimetry (> 300 KeV) Fast Neutron Reactor Research and Development Reprocessing of Used Nuclear Fuel Link Absorbed Dose and Irradiation Temperature to Properties of Polymeric Materials

MIRF Accelerator

- Radiotherapy accelerator installed ca. 1970 at Yale New Haven hospital
- Donated to NIST in 1993
- Adapted for "industrial" and research uses
 - Radiation hardness and radiation resistance
 - Materials modification (e.g. grafting)
 - Detector calibrations and radiation shielding tests
 - Fundamental physics studies

Titan Accelerator (AIMS Facility)

- Industrial 10 MeV, 17 kW e-beam accelerator
- Installation has begun
- Irradiation conditions will match those of industry
- High-dose dosimetry, sterilization applications etc.

The Future for Ionizing Radiation Science & Technology

Contributions to the New Physics

Health Science Applications and Radiation Protection

Homeland Security

Future Materials and Devices

The Future for CIRMS!

Tuesday

Quantitative Imaging, Edward F. Jackson Medical Product Sterilization, Kevin O'Hara Cosmic Radiation Hazards to Humans in Space, Ruthan Lewis

Wednesday

Alpha-particle Therapy, Jonathan Engle Chip-scale Calorimetry for Industrial Dosimetry, Ileana Pazos Food Defense During a Radiological Emergency, Stephanie Healey Optoacoustics meets Ionoacoustics:

3 D Imaging of the Bragg Peak, Vasilis Ntziachristos