Dose distribution measurements of a new directional Pd-103 low-dose rate brachytherapy source

Manik Aima, Larry A. DeWerd, Wesley S. Culberson

University of Wisconsin Medical Radiation Research Center, Madison, WI

0

25th Annual Meeting of the Council of Ionizing Radiation Measurements and Standards, Gaithersburg, MD March 27th-29th, 2017

- A new directional ¹⁰³Pd planar source array developed by CivaTech Oncology Inc. (Durham, NC) called CivaSheet[™]
- Potential use in low-dose-rate (LDR) brachytherapy treatments¹:
 - Non-small-cell lung cancer
 - Pancreatic cancer
 - Pelvic sidewall treatment
 - Head and neck cancer, colorectal cancer
 - Ocular melanoma, soft tissue sarcoma and skin cancer
- Variable array size, scalable to the treatment area size

- Array of discrete ¹⁰³Pd sources called "CivaDots"
- Each CivaDot has a gold shield on one side:
 - Defining a "hot" and a "cold" side of the device
- Maximum CivaSheet size 5 cm x 15 cm:
 - 8 mm dot spacing
 - 108 dots in 18 rows of 6

Fig: An example of a CivaSheet having 9 dots¹.

- A CivaDot consists of:
 - A small cylindrical ¹⁰³Pd source
 - Gold shield
 - Organic polymer capsule with epoxy sealing
 - Bioabsorbable membrane

- Source geometry, and design for the CivaDot different than conventional LDR cylindrically-symmetric sources:
 - Planar and directional
 - Fluorescence from the gold shield
- Guidelines and dosimetric formalisms recommended by the AAPM for conventional LDR sources¹⁻⁴:
 - No standard protocol for planar or directional LDR sources
 - AAPM Task Group No. 43 proposed formalism¹ traditional definition of various parameters precludes the use of this source

¹M. J. Rivard *et al.*, "Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations," Med. Phys. 31, 2004.

²R. Nath et al., "Code of practice for brachytherapy physics: Report of the AAPM Radiation Therapy Committee Task Group No. 56," Med. Phys., 24, 1997.

³W. M. Butler *et al.*, "Third-party brachytherapy source calibrations and physicist responsibilities: Report of AAPM Low Energy Brachytherapy Source Calibration Working Group," Med. Phys., 35, 2008. ⁴L.A. DeWerd *et al.*, "Calibration of multiple LDR brachytherapy sources," Med. Phys., 33, 2006.

- Develop a clinically-viable source strength framework and an adapted dosimetric formalism for the CivaDot
 - Dose distribution measurements of the CivaDot

Establishment of a source strength standard

$$\dot{D}(r,\theta) = S_{\rm K}$$

- CivaDot Spectrum:
 - Measured at NIST high-purity germanium spectrometer
 - Predicted at UW MCNP6 v1.0 simulations
 - Gold fluorescence observed
 - Agreement between the relative intensity of all the photo-peaks within 2% for the spectra

- Source strength measurements:
 - Air-kerma strength (S_{K}) adapted to a static on-axis measurement
 - Measurement performed at UW using the Variable-Aperture Free-Air Chamber¹ and at NIST using the Wide-Angle Free-Air Chamber²
 - An inter-comparison of the S_{κ} determination for eight CivaDot sources
 - Average agreement of 0.3% (σ=0.4%)
 - Maximum difference of 1.1%

¹Culberson *et al.*, "Large-volume ionization chamber with variable apertures for air-kerma measurements of low-energy radiation sources", Rev. Sci. Instrum. 77, (2006). ²S. M. Seltzer *et al.*, "New national air-kerma-strength standards for ¹²⁵¹ and ¹⁰³Pd brachytherapy seeds," J. Res. Natl. Inst. Stand. Technol. 108, 337-357 (2003). ³M. Aima *et al.*, "Air-kerma strength determination of a new directional ¹⁰³Pd source", Med. Phys. 42 (12), 7144-7152 (2015).

CivaDot dose distribution

<u>measurements</u>

Methods PMMA film stack phantom

- PMMA phantom (20x20x12 cm³)
- Orientation adapted to an on-axis measurement
- 12x12 cm² Gafchromic[™] EBT3 films placed on the source central axis at:
 - 1 cm, 2 cm, 3 cm, 4 cm, 5 cm hot side
 - 0.5 cm cold side
- The films were read out using an Epson 10000XL flatbed scanner

Dose-rate to water determination using EBT3 film:

- Intrinsic energy correction factor assumed to be unity^{1,2}
- Phantom/detector correction factors calculated using Monte Carlo (MCNP6) simulations

¹H. Morrison *et al.*, "Radiochromic film calibration for low-energy seed brachytherapy dose measurement", Med. Phys. 41, 072101 (2014). ²Chiu-Tsao *et al.*, "Dosimetry for ¹³¹Cs and ¹²⁵I seeds in solid water phantom using radiochromic EBT film", App. Rad. Iso., 92 102-114 (2014).

EBT3 calibration curve

- Calibration curve determined using the UW NIST-matched M40 x-ray beam (effective energy: 19.2 keV, 40 kVp)
- Sixty-two dose-to-water levels used, with four films irradiated for each dose

Results Dose distribution measurements

Results
Dose distribution comparison

Results 1 cm – pixel-by-pixel difference map

Dose rate constant analog

$$\dot{D}(r,\theta) = \Lambda$$

Methods TLD100 micro-cube measurements

- PMMA phantom (20x20x12) cm³
- Nine TLD100 micro-cubes (3x3x1 mm³ slot) irradiated along the source central axis at a distance of 1 cm
- Calibration (cGy/nC) using ⁶⁰Co beam
- Phantom/detector correction factors using MCNP6 simulations
- Intrinsic energy correction factor average of the values reported by Reed et al.¹ and Nunn et al.²

¹J. Reed et al., "Determination of the intrinsic energy response of LiF:Mg,Ti thermoluminescent dosimeters for ¹²⁵I and ¹⁰³Pd brachytherapy source relative to ⁶⁰Co," Med. Phys. 41 (2014). ²A.A. Nunn et al., "LiF:Mg,Ti TLD response as a function of photon energy for moderately filtered x-ray spectra in the range of 20-250 kVp relative to ⁶⁰Co," Med Phys 35 (2008). P DRC analog measurements - TLDs

Source ID (#)	Av. Measured DRC and DRC - MCNP6 Diff (%)
Sep2015-CivaDot1	-1.1%
Sep2015-CivaDot2	-2.6%
CSH-010-13	-2.5%
CSH-010-14	+0.2%
Dec2015-CivaDot2	-4.6%
Dec2015-CivaDot3	-4.9%
Dec2015-CivaDot4	-2.8%
Dec2015-CivaDot5	-2.2%
Average	-2.6%
Std Dev (%)	1.7%

Presults DRC analog measurements – EBT3 film

PRC analog measurements – EBT3 film

Source ID (#)	Av. Measured DRC - EBT3 and DRC - MCNP6 Diff (%)
Sep2015-CivaDot1	-0.5%
Sep2015-CivaDot2	-1.0%
Sep2015-CivaDot3	1.0%
CSH-010-13	2.9%
CSH-010-14	-2.8%
May2016-CivaDot1	3.9%
Aug2016-CivaDot1	2.4%
Nov2016-CivaDot1	-1.2%
Average	-0.6%
Std Dev	2.3%

- Preliminary dose distribution measurements of the CivaDot:
 - EBT3 film stack successfully used as a quantitative dosimeter for brachytherapy dose distribution measurements
 - Comparison to Monte Carlo predicted dose distributions encouraging
 - Existing recommended dosimetric formalisms can be adapted to accommodate planar and directional sources

- Future work:
 - Integrate analog dosimetric parameters into a TPS
 - Test the feasibility of an adapted TG-43 dosimetric formalism
 - Realization of a clinically viable dosimetric framework for the CivaSheet

- The work at UWMRRC was partially supported by NCI contract (HHSN261201200052C) through CivaTech Oncology, Inc.
 - Dr. Kristy Perez, Dr. Jainil Shah
- Staff and students of UWMRRC
 - Cliff Hammer, John Micka, Wendy Kennan
- UWADCL customers whose calibrations help support ongoing research at UWMRRC.
- Landauer for sponsoring the CIRMS Student Travel Grant

Thank you for your attention!! QUESTIONS ???