

Why Cone Beam CT Can Make 3D the Standard of Care in Extremity Imaging

Stuti Singh Senior Project Engineer CurveBeam, LLC Warrington PA

Council on Ionizing Radiation Measurements and Standards 2017 Silver Anniversary Meeting

What is Cone Beam CT?

Cone Beam CT – rectangular, cone shaped beam scans with designated area of interest

Multi-Detector Medical CT – narrow, fan shaped beam with spiral scanning area of interest

Cone Beam CT vs Traditional CT

Pro's

Cone Beam CT	Medical CT				
Lower Dose	Higher Dose				
Smaller Footprint, point of care	Larger Footprint, external imaging center				
More Affordable	More Expensive				
True Weight-bearing capabilities for lower extremities	Only simulated weight-bearing capabilities				
True sitting up position for skull	Only supine position for skull				

Cons

Cone Beam CT	Medical CT
Higher Noise	Lower Noise
Higher Scatter Radiation	Lower Scatter Radiation
Specific Extremities only	Whole body

History – Dental and Maxillofacial Radiology

i-CAT

NewTom 9000

History – Dental and Maxillofacial Radiology

Cone Beam CT transformed the Dental and Maxillofacial Industry by allowing specialists to plan bite corrections and jaw alignment surgeries in 3D. Invisalign[®], custom implants, and braces customized to the patient are possible because of CBCT.

CurveBeam pedCAT

- Single or bilateral scan of foot and ankles
- Scan time under one minute
- Plugs into standard 115 VAC outlet
- 0.3 mm isotropic slices
- Up to 30cm Diameter x 20 cm height

CareStream OnSite

Planmed Verity

CurveBeam InReach (510(k) Pending) and LineUp (Investigational)

Dose Information

Technique	Effective Dose in microseverts (μSv)
Daily Background	8 per day (or 3000 μSv per year) **
Difference of daily background for high altitude	50% more per day (or 1500 μ Sv more per year) **
locations (i.e: Denver) vs. sea level	
Coast to coast round trip airline flight	30 **
PedCAT Cone Beam CT	
Medium FOV (1 foot)	2 ****
Large FOV (2 feet)	5 ****
Medical MDCT of the lower extremity (foot & ankle)	25-70-1000 *** **** ****
Chest Film X-ray	100 **
Extremity Film X-ray	1 **
Medical CT of Chest	7000 **
Dental Medium FOV Medical CT scan (Sonatom 64	860 *
slice)	
Dental Panoramic (OrthoPhos Plus DS)	32.2 *
Dental Full Mouth Series (Average of various	50 *
techniques)	
Dental Cone Beam CT exam (i-CAT, medium FOV)	87 *

References:

*Comparative dosimetry of dental CBCT devices and 64-slice CT for oral and maxillofacial radiology

John B. Ludlow, DDS, MS, FDS RCSEd, a and Marija Ivanovic, PhD, b Chapel Hill, North Carolina

UNIVERSITY OF NORTH CAROLINA

**RadiologyInfo.org developed jointly by American College of Radiology and Radiological Society of North America. www.radiologyinfo.org

***Nagel HD. Dose values from CT examinations. In: Nagel HD, ed. Radiation exposure in computed tomography. Hamburg, Germany: CTB Publications, 2002:15-24

****Biswas D, Bible JE, Bohan M, et al: Radiation Exposure From Muscoloskeletal Computerized Tomographic scans, Yale University and Yale-New Haven Hospital, 2009

*****Report on CurveBeam CBCT Foot Dosimetry, John Ludlow, DDS, MS, FDS RCSEd

Dose Measurement PedCat - CTDIvol (mGy)

	TIME				CTDI –	CTDI100	CTDI100	
	OF SCAN			HEIGHT	free air	Center	Peripheral	CTDIvol
Procedure	(s)	kVp	mA	(cm)	(mGy)	(mGY)	(mGy)	(mGy)*
Center								
Small Pt	16	100	5	20	0.70	0.421	0.497	0.47 +/- 0.01
Center	16	120	5	20	1.04	0.80	0.931	0.89 +/- 0.02
Offset								
Small Pt	32	100	5	20	1.04	0.627	0.626	0.63 +/- 0.02
Offset	32	120	5	20	1.63	1.25	1.081	1.10 +/-0.03

Center Small Pt = Small Patient: Medium Field (100kVp) procedure option.

Center = Medium Field (120kVp) procedure option.

Offset Small Pt = Small Patient: Large Field (100kVp) procedure option.

Offset = Large Field (120kVp) procedure option

Dose Area Product (DAP) Measurements

Protocol	dGy*cm*cm	µGy∙m²
MEDIUM FOV 120	8.03	80.26
MEDIUM FOV 100	4.92	49.15
LARGE FOV 120	14.84	148.44
LARGE FOV 100	8.97	89.68

Why Weight-Bearing?

Many foot and knee conditions such as misalignment, osteoarthritis, and surgical bone fusions can only be properly diagnosed and/ or analyzed in a weight bearing position

Collan et al, 2013:1

- 10 patients with hallux valgus deformity
- 5 controls
- alignment of the 1st ray
- controls:
 - no differences WB vs. non-WB
- patients with hallux valgus deformity:
 - significant differences WB vs. non-WB

Why 3D?

2D X-Ray images vary based on patient positioning and X-ray beam angle. The top left images show X-Rays of the same patient taken on the same day, but because of the differences in position and angle, one shows the foot with good alignment while the other shows a misalignment – X-Rays can be misleading

TALAS[™] (Torque Ankle Lever Arm System) – a new paradigm to measure alignment in weight-bearing 3D

Joint Space in Knee (Osteoarthritis Detection)

Figure 4: Tibiofemoral Joint Space Width

Accurate measurement of the joint space width in the knees allows for early detection of osteoarthritis

Minimum JSW Measurements by Radiographs and 3D SCT

Talar Navicular Non Union

3D Reconstruction Advancements -Metal Artifact Reduction

3D Reconstruction Advancements – Motion Correction

Focus off

Focus (on thumb)

3D Reconstruction Advancements - Auto-Calibration

original

calibrated

Soft Tissue Visualization – Gout

Images are from medical CT- Development is underway to bring the same technology to CBCT

Images from :

Naveen Subhas, MD, Cleveland Clinic http://www.clevelandclinicmeded.com/medicalp ubs/diseasemanagement/rheumatology/goutand-pseudogout/

J Rheum Dis. 2011 Jun;18(2):137-141 https://doi.org/10.4078/jrd.2011.18.2.137

Soft Tissue Visualization – Tendons and Ligaments

Images are from medical CT- Development is underway to bring the same technology to CBCT

True Custom Orthotics

First Orthotic insert to account for patient's specific bone anatomy

Shoe Design

Allows show manufacturers to see how bones are affected in high heels and athletic footwear

Thank You

