

Advances in Preclinical IGRT Commissioning and Quality Assurance

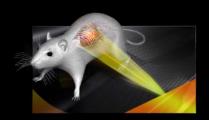
Paul De Jean Product Manager, Image-Guided Systems

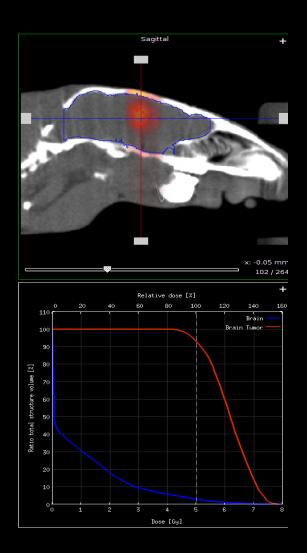
X-RAD Cabinet Irradiators

The X-RAD systems are selfcontained X-ray irradiation systems for high and low dose radiation studies normally conducted in research laboratories.

•High X-ray Peak Energies (160-450kV)

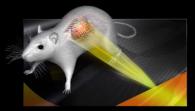
Installations all over the world

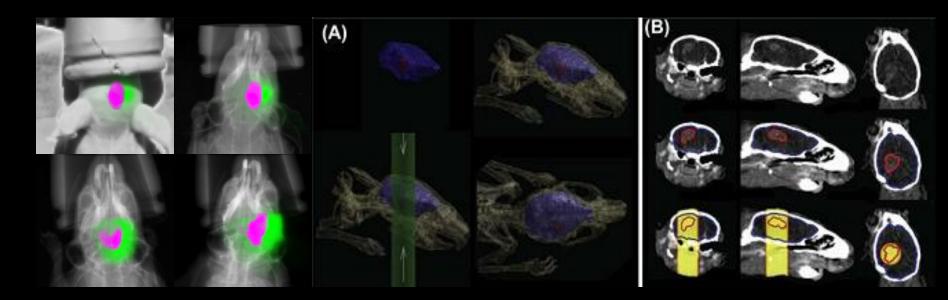

Preclinical X-Ray Applications


- Whole body radiation
- Partial body (flank, whole brain, etc.) irradiation
 - Targeted irradiation of healthy structures
 - Large subcutaneous tumors
- Bone Marrow Ablation
- Cell irradiation

Preclinical Image-Guided Radiation Therapy

- Want to mimic clinical capabilities
- Incorporation of image guidance
- Precise, targeted irradiation
- Treatment Planning Systems needed
 - Employ Monte Carlo calculations
- Incorporation of multiple imaging modalities (BLI, MRI, PET, etc.)

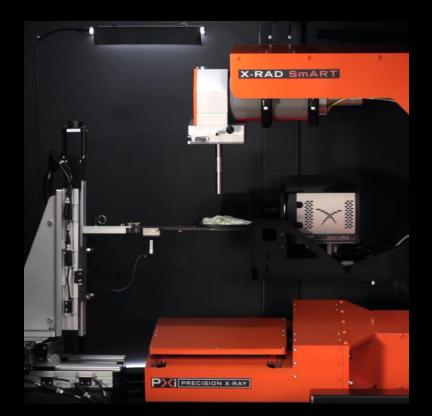

X-RAD SmART IGRT



Sample Application – Monitoring IGRT Response and Progression

An image guided small animal radiation therapy platform (SmART) to monitor glioblastoma progression and therapy response Green Journal 2015

Researchers: Sanaz Yahyanejad, Stefan J. van Hoof, Jan Theys, Lydie M.O. Barbeau, Patrick V. Granton, Kim Paesmans, Frank Verhaegen, Marc Vooijs

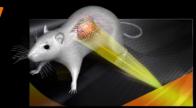


Importance of Commissioning and Quality Assurance

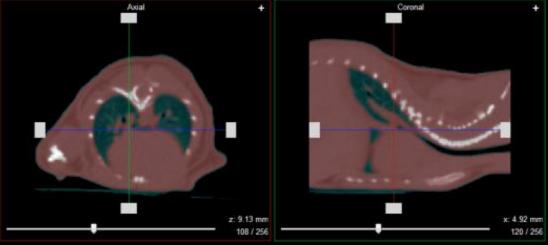
- More capabilities has led to more complex systems
- Commissioning procedure must be robust and conform to existing dosimetric protocol
- QA must be comprehensive and tackle all system aspects
- QA workflow must be simple/automated such that it gets done

System Commissioning and QA Requirements

System Capabilities


- High Resolution Imaging
- Precise Radiation Targeting
 - Advanced Tracking
- Rapid, Accurate Dose Delivery
 - Cell/Multi-mouse Irradiation
 - Simple Treatment Plans
 - Complex, Multi-Beam Plans
- Reproducible Delivery Across Many Specimens
- Tumor Viability Tracking

Commissioning/QA Responsibilities


- Flat Panel QA, Geometric Calibrations
- Winston Lutz Tests
 - Basic and Advanced
- Full Dosimetric Commissioning
 - Absolute Dose
 - Percent Depth Dose (PDDs)
 - End to End Tests
- Consistent, Timely QA
- Dedicated Personnel
- Bioluminescence System QA

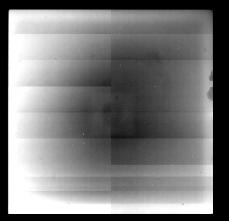
Importance of High Quality Imaging

- The obvious better images = better guidance
- Image accuracy necessary for Monte Carlo Planning
 - Calculations based on heterogeneous tissue
 - Both material density and atomic structure play
 pivotal role

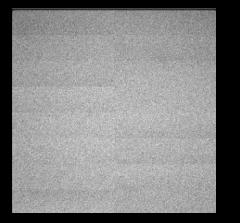
CT Imaging Phantoms

Shelley Medical Micro-CT Performance Evaluation Phantom (Du, 2007)

- Ability to measure a large number of imaging metrics:
 - Qualitative Spatial Resolution through a coil plate (150-500 μ m)
 - Quantitative Spatial Resolution though a slanted edge plate
 - Geometric accuracy through evenly separated tungsten beads
 - CT Number Evaluation through inserts of known materials (less applicable for CBCT)
 - CT Number Linearity through varied iodine concentrations
 - CT Uniformity and Noise

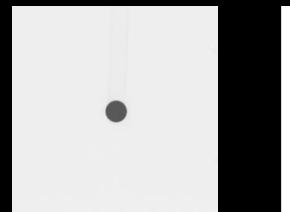


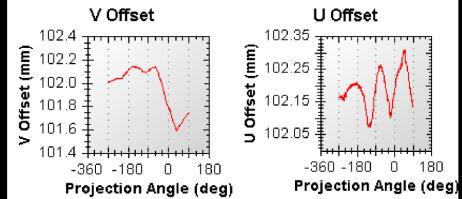
SMART Scientific Solutions Preclinical CT Calibration Phantom

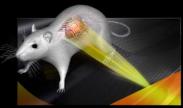

- Miniature Equivalent of Clinical CT Number Phantom
- Materials include: Brain, Adipose, Breast, Solid Water, Liver, Inner (Spongy) Bone, Cortical Bone

CT Imaging Commissioning

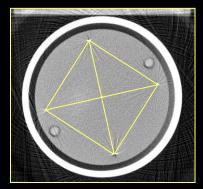
Dark Fields

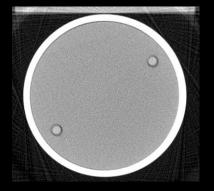


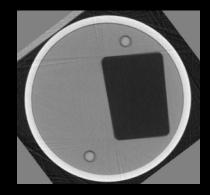

Flood Fields

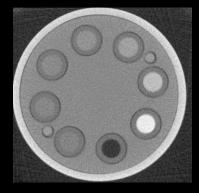

Defect Maps (Dead Pixels)

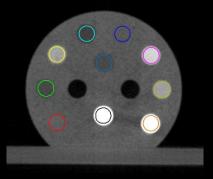
Gantry Flex Correction




CT Resolution


Geometric Accuracy

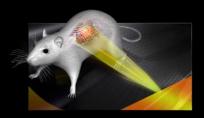

CT Uniformity


MTF

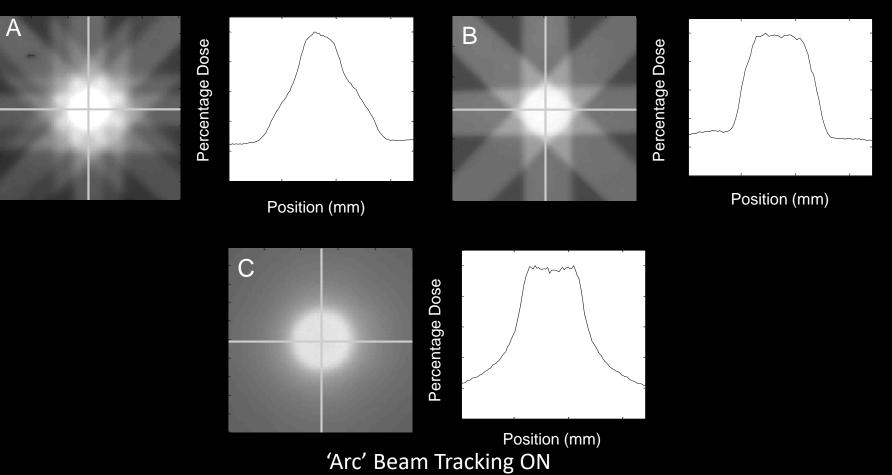
CT Linearity

CT to Material Density

Preclinical Dosimetry



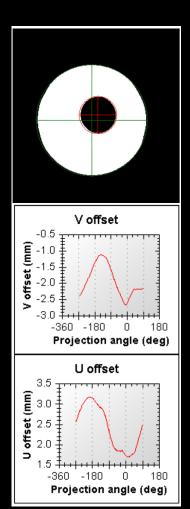
- Bring systems to "clinical" standards
- Kilovolt (kV) energies
 - Less penetration than Megavolt (MV) used in clinic
 - Must calibrate instruments to kV energies
- Small irradiation targets/specimens
 - Precise targeting even more important
 - Much faster computations smaller beams and volumes
- Even more precise system alignment, positional accuracy (order of $\mu m)$
- Must also factor in system specific variables:
 - Tube output, focal spot
 - Gantry flex



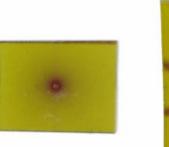
Targeting Correction

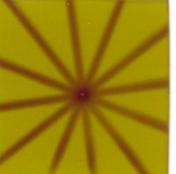
8 Beam Tracking ON


8 Beam Tracking OFF

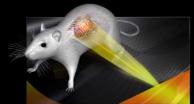

Images From: Clarkson et. Al., Med. Phys., 2011 Feb;38(2):845-56. "Characterization of image quality and image guidance performance of a pre-clinical micro-irradiator"

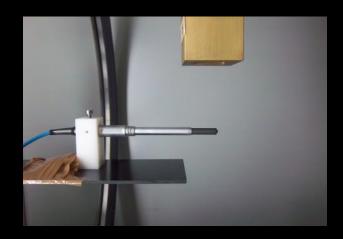
Targeting Commissioning

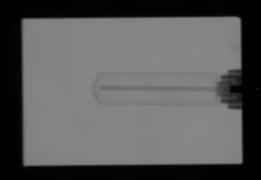



Winston Lutz Map

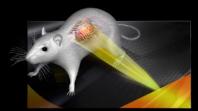
Advanced Tracking Targeting Accuracy

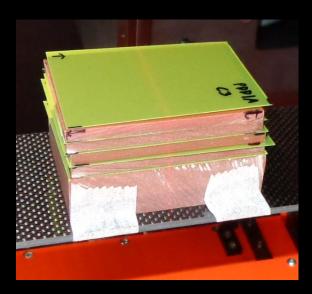




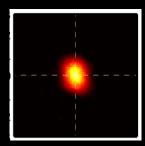


Dosimetric Commissioning – Absolute Dose


- Most important measurement
 - All others derived from it
- Ion chamber calibrated to correct kV energies
- Conform to AAPM TG-61
- Many variables to consider
 - Temp/Pressure
 - Beam Spectrum (HVL)
 - Backscatter
 - Ion Collection Efficiency
 - Polarity Effect
 - Tube End Effect

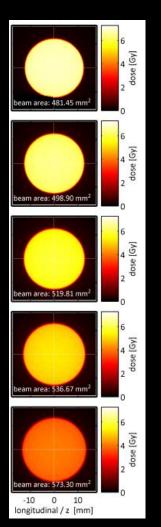

Dosimetric Commissioning – Film Measurements

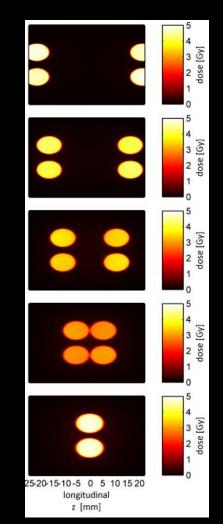
Setup


Employ stack of solid water and EBT3 film

Scan 24 hours later

ROF (small fields)

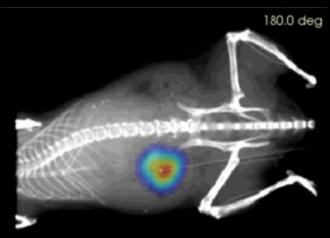

Percent Depth Dose End-to-end Dosimetry

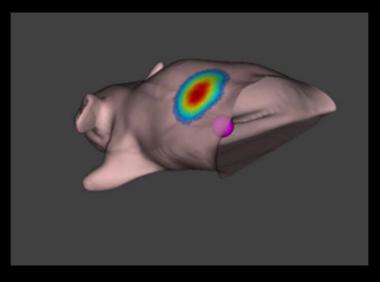


lateral/x profile

longitudinal/z profile

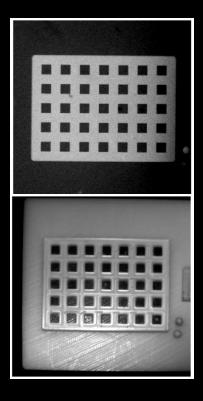

 -
Λ
7
/

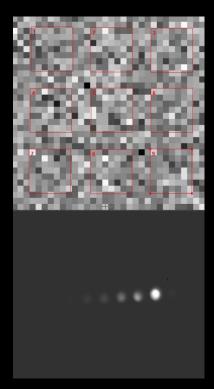


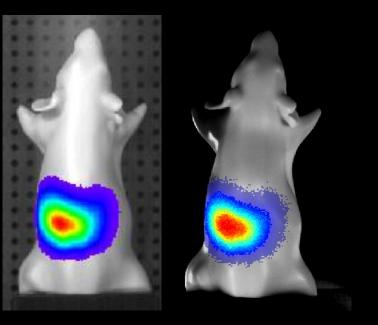


Bioluminescent Imaging

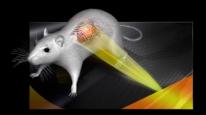
- Light Emission from Living Organisms
 - In Nature: Fireflies, Glow Worms, etc.
- In scientific studies: Inject Luciferase (light emitting enzyme) to latch onto specific tissues (tumour, infection, etc.)
- BLI Integrated into Cabinet
 - Mounted to same gantry as X-Ray Tube and FPD
 - Easily co-register images
- Additional imaging capabilities
 - Visualize structures nonpalpable in CT
 - Track tumor viability




BLI Calibrations


Coordinate System Registration

Light Leakage and Intensity



Phantom Comparison with IVIS systems

Quality Assurance

Imaging QA

- Dark Field Calibrations (every scan)
- Geometric Flex Calibration (monthly)
- Flood and Defect Map Calibrations (bi-annual or as needed)
- BLI intensity calibration (biannual)
- BLI realignment (as needed)

Dosimetric QA

- Absolute Dose measurements (monthly)
- HVL measurements (biannual)
- Winston-Lutz Test (monthly)

Logistic considerations

- Need dedicated staff for operations and QA
- If processes are overly complicated, it leads to more errors
- Shared lab space have less resources than hospital
 - Can't earmark entire medical physics dept.
- Automated QA is essential

What makes a good plan?

- Good question! It's why we're doing this research!
- Have guiding principles:
 - Maximum dose to targeted areas
 - Minimize to those outside target
- What makes a plan "best"?
 - Proportion of intended treatment outcomes
 - Ideal system workflow

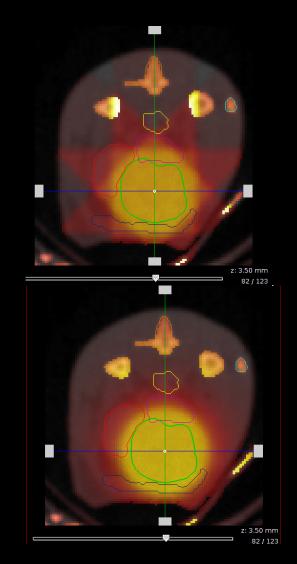
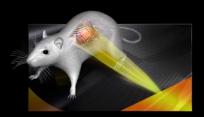



Image taken from Chaudary et. Al, 2015

Future innovations

- Semi-Automated Inverse Planning
- Greatly simplify workflow
- Additional QA needed
- Consider users expertise
 - Need automated planning feedback
 - Build database through network of users

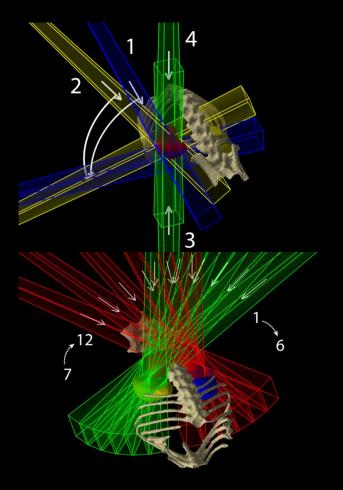


Image taken from Balvert, Van Hoof et al, 2015

What Next?

- Standardize QA and Commissioning across all sites
 - Collaboration between boards, academia and industry
- Incorporate automation for compliance
- As new features added, new protocols must arise as well

Thank You!

