Modeling Biological Responses of Therapeutic Ionizing Radiation Ramin Abolfath

image taken by Voyager 1 1990-4G miles from the planet Earth

our environment "universe"is full of radiation ranges f/om:

- Background radiation ~ 3K - High energy particles: γ, e^-, p , He, heavy ions, exotic particles, ...

Life persists on this "Pale Blue Dot"

A biological-singularity or blackhole of life in the universe

3/31/2017

Optimization in Radiation Therapy

• Maximize tumors control probability (TCP)

 \bigcirc

 Minimize normal tissue complication probability (NTCP)

Pros and Cons of Ions (Proton/He/C/...) over Photon

- Dose fall off sharply in the distal edge
 - o Higher target coverage
 - o Protect normal tissues
- However more complex biological responses

PB-IMPT / multienergy scanning technique

Do we know RBE accurately in the end of proton range

Variable RBE

Energy deposition of primary and secondary particles

LET of primary and secondary particles

 \mathcal{D}

- Considering a uniform RBE 1.1 in proton therapy allows optimization of plans and employing TPS techniques developed in photon therapy
- Is constant RBE a reality?

Brain Necrosis in CNS Patients - Possible Consequences of Variable RBE

 \bigcirc

40 year old male with craniopharyngioma

Possible Consequences of Variable RBE - Brain Necrosis in CNS Patients

A simple case study for ARC therapy applicable in H&N

Fields Dose Prescription 🗆 Field Alignments 🔍 Plan Objectives 💭 Optimization Objectives Dose Statistics Calculation Models Plan Sum

Group	Field ID	Technique	Machine/Energy	MLC	Field Target	Field Weight	Scale	Gantry Rtn [deg]	Coll Rtn [deg]	Couch Rot [deg]	X [cm]	Y [cm]	Z [cm]	Calculated SSD [cm]	Monitor Unit [MU]
2	1	MODULAT_SCANNING-I	Proton_2 - 70-235P		OAR_1	1.000	IEC61217	90.00	0.00	0.00	0.03	0.03	-0.05	194.1	
~	2	MODULAT_SCANNING-I	Proton_2 - 70-235P		OAR_1	1.000	IEC61217	90.00	0.00	355.00	0.03	0.03	-0.05	194.1	
~	3	MODULAT_SCANNING-I	Proton_2 - 70-235P		OAR_1	1.000	IEC61217	90.00	0.00	350.00	0.03	0.03	-0.05	194.1	
~	4	MODULAT_SCANNING-I	Proton_2 - 70-235P		OAR_1	1.000	IEC61217	90.00	0.00	345.00	0.03	0.03	-0.05	194.1	
~	5	MODULAT_SCANNING-I	Proton_2 - 70-235P		OAR_1	1.000	IEC61217	90.00	0.00	340.00	0.03	0.03	-0.05	194.1	
~	6	MODULAT_SCANNING-I	Proton_2 - 70-235P		OAR_1	1.000	IEC61217	90.00	0.00	335.00	0.03	0.03	-0.05	194.1	-

Press mouse button on corner of the zoom area

User: abolfatr Group: Student Proton Site: Main CAP NUM SCRI

9:47 AM

1/10/2017

 \Box

dose

C:\Users\abolf\Desktop\HP Desktop3\4-UPenn\4-FoCa\FoCa_patients\zz_5-72_CIRCLE_RBE\PMAT

 \bigcirc LET zz_5-72_CIRCLE, (zz_5-72_CIRCLE) - External Beam Planning Zz_5-72_CIRCLE, (zz_5-72_CIRCLE) - External Beam Planning - [FoCa_LET - Unapproved - Transversal - CT_1] ← ⇒ File Edit _ 🗆 🗵 Dose Line Profile: FoCa_LET 🖉 🗊 😔 🔕 zz_5-72_Cl 🥣 Total 🖻 🧰 C1 360 🍕 360 400 Total 360 369.859 360 360 360

Abolfath, Ramin 🔻

8

How can we account for the variability in RBE? What would be appropriate model?

Multi-Scale RBE Modeling: $cm \rightarrow \mu m \rightarrow nm$

Radio-biological response is a collective macroscopic phenomenon that is resemblance of microscopic energy deposition events; like superconductivity and magnetism so we would start from nm-track structure

Atoms color code: C, O, N, P, H

\mathcal{O}

Track structures and ion coordinates calculated by MC (Geant4-DNA)

0.08

0.04

 $y(\mu m)$

Computational challenges – requires data mining

• A single track of 1MeV electron/proton contains ~ 50,000 ion-coordinates

RBE from first principle multi-scale modeling – data mining

 IOP PUBLISHING
 PHYSICS IN MEDICINE AND BIOLOGY

 Phys. Med. Biol. 58 (2013) 7143–7157
 doi:10.1088/0031-9155/58/20/7143

A molecular dynamics simulation of DNA damage induction by ionizing radiation

10

LET [keV/µm]

 $RBE_{DSB} \sim 4$

10

Proton Energy [MeV]

15

0.5

20

Spatial Mapping of the RBE of Scanned Particle Beams High Precision, High Throughput Experiments (Guan, et al 2015)

Snout The Jig Snout Scanning Proton Beam

96-well plates

OPEN Spatial mapping of the biologic subject AREAS: BIOLOGICA TECHNIQUES RADIOTHERAPY Received Subject AREAS: BIOLOGICA TECHNIQUES Received Subject AREAS: SUBJE

1 October 2014

18 March 2015

18 May 2015

Accepted

Published

Fada Guan¹*, Lawrence Bronk²*, Uwe Titt¹, Steven H. Lin^{2,3}, Dragan Mirkovic¹, Matthew D. Kerr¹, X. Ronald Zhu¹, Jeffrey Dinh², Mary Sobieski⁴, Clifford Stephan⁴, Christopher R. Peeler¹, Reza Taleei¹, Radhe Mohan¹ & David R. Grosshans^{2,3}

¹Departments of Radiation Physics, ²Experimental Radiation Oncology, ²Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, U.S.A., ⁴Center for Translational Cancer Research, Texas A&M Health Science Center, Institute of Biosciences and Technology, Houston, Texas, U.S.A.

 $-\ln(S) = \alpha D + \beta D^2$

 $\alpha(LET) = \alpha_0 + \alpha_1 \times LET + \alpha_2 \times LET^2 + \alpha_3 \times LET^3 + \cdots$ $\beta(LET) = \beta_0 + \beta_1 \times LET + \beta_2 \times LET^2 + \cdots$

Fitting the experimental data – Global 3D surface fitting

• Making correlation among the curves

Cell survival fraction for low (left panel) and high (right panel) LETs. The blue dots are the experimental data.

Non-linearity in RMF model

Diagrammatic Representation of non-linear LETs terms; perturbative expansion

Summary

Limitations of Current Proton RBE Models

- Based on insufficient and inconsistent data and fitting procedures
- Assumption of RBE as linear (or near linear) function of LET

• LET dependence on averaged dose or fluence

Current Models Likely Underestimate RBE Especially at Points Around the Bragg Peak

Recommendation if RBE ≠ 1.1; variable RBE

- Avoidance of beam directions for which distal edge is in or close to a sensitive critical normal structure
- Deliver conformal dose and LET distribution within the target
- To achieve these goals direct measurement of LET is needed
- A direct measurement and modeling to establish accurate correlation between RBE and LET

Acknowledgements

My past mentors:

Radhe Mohan & Lech Papiez

Physics:

• Rob Stewart, Dave Carlson, Alejandro Carabe, Ravi Nath, Harald Paganetti, Uwe Titt, Jan Schuemann, ...

Rad Bio:

• Michael Story, David Chen, Bob Timmerman, Peter Glazer, Sara Rockwell, Reinhard Kodym, David Grosshans, ...

Funding:

- NCI P01 and U19 CA021239 MDACC-MGH collaborative project ...
- Varian PMAT project
- St. Vincent's hospital at Bridgeport, CT

 \bigcirc

Our work submitted recently to Sci. Rep. is available Ramin.Abolfath@StVincents.org

A model for relative biological effectiveness of therapeutic proton beams based on a global fit of cell survival data

Ramin Abolfath¹, Christopher R. Peeler¹, Mark Newpower¹, Lawrence Bronk¹, David Grosshans², and Radhe Mohan¹

Departments of Radiation Physics¹ and <u>Radiaiton</u> Oncology², <u>The</u> University of Texas MD Anderson Cancer Center, Houston, TX 77030

Thank You