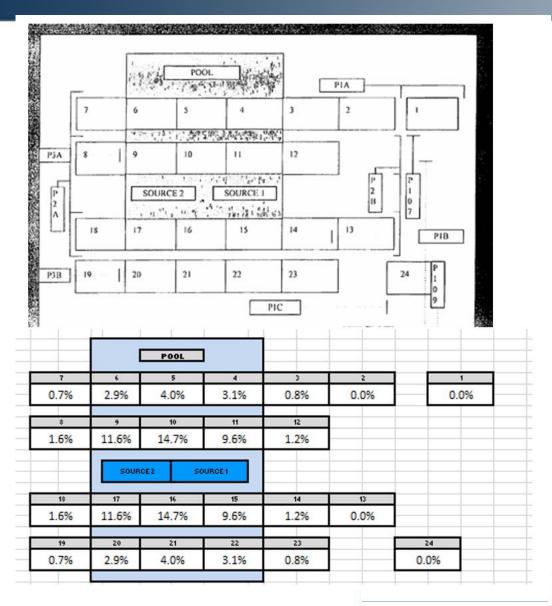
Establishing Process Parameters and Process Acceptance

Deepak Patil: Director, Radiation Technology


Agenda

- Gamma irradiator overview
- Operational Qualification (OQ)
- Performance Qualification (PQ, product dose mapping)
- Target dose
- Cycle time calculation
- Processing parameters
- Cycle time setting
- Process acceptance

Gamma Irradiators

- Activity 2MCi 5MCi
- 2-pass, 4-pass system, 6pass systems
- Source overlap –carrier length is above and below source rack height
- Product overlap two levels of carriers.
- Carriers cycle around the source rack in each dwell position
- Contribution of total dose per dwell position

Data Establishing Process Parameters

• Data used to establish process parameters

➢OQ data from source loading (cycle time calculation)

PQ data from product dose maps following loading (cycle time calculation)

Historical data (scheduling)

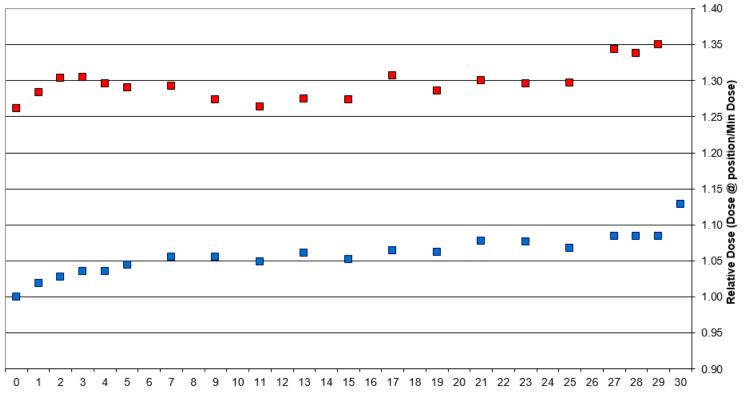
>Empty to full carrier effects (scheduling)

Establishing Process Parameters OQ data

Operational qualification data following source loading •Three densities

> Low, middle, high covering typical routine processing density range

➤Three carriers per density


➤Use average minimum and maximum dose in initial cycle time calculations

Data from empty-to-full carrier for low, middle, high density

Qualification #25 (0.16 g/cc) 2 racks

ACE

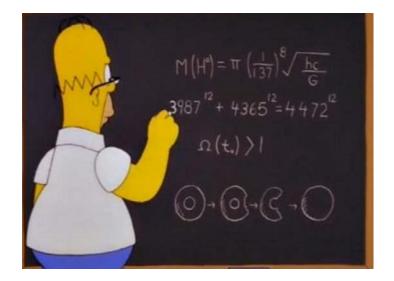
PQ Product Dose Map Data

- Products are dose mapped after each source loading
- Each product's data contains placements based on OQ results from the applicable density range
- Product dose specification – starting point for setting process

Customer:					Process Date:				
IR Run #:	27094A				Cyle Time (sec):				
Family:	NA			Number of Dosi	meters per Position :	3			
Product Code:	NA								
Load Specification No:	9								
Eff Density (g/cc):	0.12								
, (0 ,									
	DOSE MA	P CARRIER	R NUMBER						
						Sum of Squared			
Dose Coordinate	1st	2nd	3rd	Equivalence Zone MinZone	Mean at Position	Differences	0	0.704	
0C1	30.2	29.5	28.5	MinZone	29.4	1.462	Overall Var	0.701	
0C3	30.7	30.8	29.1		30.2	1.745	MDD		
0C7	30.1	30.2	29.3	MinZone	29.8	0.456	MDD	1.14	_
0C9	29.8	29.8	28.3	MinZone	29.3	1.641	Minimum data	00.01	
1C1	30.9	30.7	29.7	MinZone	30.4	0.787	Minimum dose	29.3 kG	
1C9	31.0	30.6	29.8		30.5	0.741	Maximum dose	42.0 kG	эy
2C1	32.1	31.9	29.7		31.3	3.483			
2C9	32.3	32.0	30.7		31.7	1.369			
TBC9	33.8	34.0	33.7		33.8	0.042	Min Position	0C9	
3A5	39.0	39.1	38.1		38.7	0.581	Max Position	23A5	
3E 5	38.5	37.4	36.9		37.6	1.227			
1A5	38.2	38.2	37.4		37.9	0.415	DUR	1.43	
E 5	38.1	37.5	36.8		37.5	0.926			
5A5	39.5	39.7	38.9		39.4	0.349			
5E 5	37.9	38.2	37.8		38.0	0.110			
7A5	40.5	40.4	39.2		40.0	1.067			
7E 5	38.4	38.1	36.7		37.7	1.588			
9A5	39.2	41.1	39.8		40.1	1.864			
9E 5	38.0	38.3	37.6		38.0	0.246			
11A5	40.9	40.9	39.0		40.3	2.389			
11E 5	38.9	38.2	37.2		38.1	1.427			
13A5	41.1	38.7	37.6		39.1	6.293			
13E 5	39.9	38.2	37.4		38.5	3.100			
15A5	41.6	41.9	40.3	MaxZone	41.3	1.381			
15E 5	39.4	40.3	37.5		39.0	3.989			
17A5	40.6	39.0	37.6		39.1	4.655			
17E 5	39.1	39.4	37.6		38.7	1.817			
19A5	42.1	41.6	40.4	MaxZone	41.4	1.399			
19E 5	40.2	39.9	39.2		39.8	0.526			
21A5	39.8	39.1	38.9		39.3	0.440			
21E 5	39.1	38.8	38.5		38.8	0.194			
23A5	42.5	41.9	41.6	MaxZone	42.0	0.433			
23E 5	39.9	40.2	40.7		40.3	0.374			
25A5	39.6	41.3	38.9		39.9	3.185			
25E 5	38.7	39.3	38.1		38.7	0.714			
27A5	42.4	42.1	41.3	MaxZone	41.9	0.562			
27E 5	39.2	39.3	39.4		39.3	0.019			
TBA5	38.0	39.5	38.3		38.6	1.329			
TBE5	38.0	38.2	38.8		38.4	0.363		S1	

Target Dose

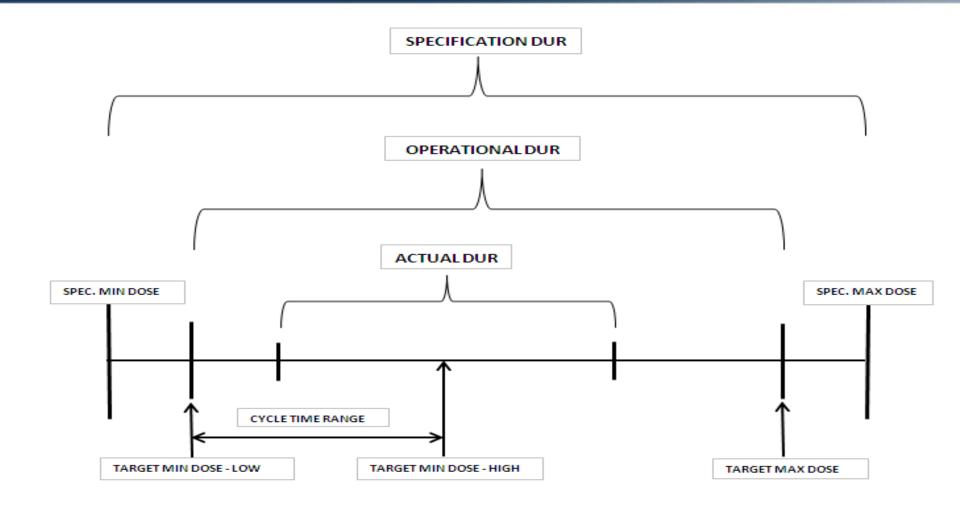
Spreadsheet allows for a minimum dose buffer



- Planner will never schedule a run based on the exact minimum dose specification
- Planners have the ability to add a buffer to the spreadsheet
 - X% over the min dose specification
 - Y% under the max dose specification
- Target dose = recommended buffer % over minimum dose specification
 - Process variability accounts for measurement response changes of dosimeter, decay change relative to cycle time over 30 days, and variation from PQ data replicates

Cycle Time Calculation

- Cycle time calculation spreadsheet used
- Coming out of a loading, the data inputted into the spreadsheet is OQ data
- Use OQ data for initial runs; typically products with wide dose ranges
- Populate cycle time spreadsheet with product dose map data
- Over time, all PQ results are inputted into the spreadsheet



Cycle Time Calculation

- PQ data has limitations
 - Three middle carriers does not account for phase in/phase out densities
 - Changes in product packaging
 - Changes in product weight
- Calculated cycle time must be adjusted for scheduling
 - Empty-to-full carrier data from OQ
 - Daily production schedule
 - All products processed that day in sequential order
 - Product density, number of carriers, min/max dose from first/middle/last carriers, cycle time
 - Historical data

Establishing Process Parameters

Cycle Time Setting

		Bulk	Effec.	Spec.	Spec.		С	Target	Today's Cy	cle Time	Hist	Schedule	Predicted	Predicted
Customer	Product	Density	Density	Min.Dose	Max.Dose	Loading	0	Min. Dose	Min.	Max.	Data	Cycle time	Min. Dose	Max. Dose
	Code	(g/cc)	(g/cc)	(kGy)	(kGy)	Diagram	Μ	(kGy)	(sec/cyc)	(sec/cyc)	DUR	(sec/cyc)	(kGy)	(kGy)
	Med. Devices	0.03	0.02	25.0	35.0	L-08 1BOX	32"	26.0	615	755	1.05	650	27.5	29.0
	Med. Devices	0.13	0.08	25.0	38.0	L-03 4 per		26.0	660	782	1.19	700	27.6	32.7
	Med. Devices	.07/.10	.04/.10	25.0	40.0	01/02 9/8 per	r	26.0	675	835	1.19	715	27.6	32.9
	Med. Devices	0.23	0.22	25.0	40.0	L-23 16 PER		26.0	755	829	1.34	775	26.7	35.9
	Med. Devices	0.08	0.08	25.0	40.0	L-02 8 PER		26.0	665	780	1.26	700	27.4	34.5

Process Verification and Acceptance

- Dosimetry is the indicator of process verification
- Product release is based on the dose value measured on the dosimeter
- There is no adjustment of dose after measurement
- For example, for a product with 25.0 kGy min specification; 24.9 kGy OOS and non-conformity, 25.0 kGy in specification

