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Radiation Physics Division
Electron Accelerators

m Electron Van de Graaff

— Direct current beams up to —250 pA
— Energy range —500 keV to 2000 keV

m MIRF Linear Accelerator
— Pulsed beams up to —20 pA
— Energy Range —10 to 28 MeV

m Clinac Linear Accelerator

— Pulsed therapy level beams

— 6, 18 MV photons; 6, 9, 12, 16 and 20 MeV
electrons



Van de Graaff Accelerator

m Installed 1965 (52, and still going strong!)

m Applications:
— Radiation hardness testing
— Materials modification
— Detector calibrations




Van de Graaff Parameters

Source: hot cathode
pentode

Operating mode: direct
current

Duty factor: 100%

Beam current: variable up
to —0.25 mA




Clinac Accelerator
m Medical radiotherapy accelerator

m Certified “pre-owned”, installed at NIST 2004

m Applications include:
— High-energy medical dosimetry
— Detector calibrations p—=a




Clinac 2100C Beam Parameters

m 6 and 18 MV Photons

m6, 9 12 16 and 20 MeV
Electrons

m Dose Rates from 80 to
400 MU (cGy)/min

m Field Size: 0.5 x 0.5 cm
to 40 x 40 cm (photon),
4 x4 cmto 25 X 25 cm
(electron)




Lead shielding

Carousel and collimating jaws

3-D Radiation Scanner




MIRF Accelerator

m Radiotherapy accelerator installed ca. 1970 at Yale New
Haven hospital

m Donated to NIST in 1993
m Adapted for “industrial” and research uses
— Radiation hardness and radiation resistance
— Materials modification (e.g. grafting)
— Detector calibrations and radiation shielding tests
— Fundamental physics studies




Dosimetry for Quality Assurance



MIRF Beam Energy Validation

m Measure depth-dose curves In a water
phantom with ion chamber

m Use dosimetry protocols (ICRU, AAPM) to
determlne energy at phantom surface
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Measured Depth-Dose Curves in Water
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MIRF Monte Carlo modeling




20 MeV Computed Energy Spectra
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Measured vs. Computed
Depth-Dose Curves

20 MeV Depth-Dose Curves in Water

—a— Ilonte Carlo computation
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MIRF Energy Calibration Results

Nominal Energy at | Meas R50 [cm] | Meas Energy | %o difference
EO [MeV] | phantom [MeV]
surface




Clinac Accelerator QA

Clinac 6 MV depth-dose curves

Depth dose curve in a water phantom
provides a check of beam quality

These two depth-dose curves

were taken 10 years apart

Water Depth, mm




Dosimetry Applications



Solar Cell Radiation Testing

m Accelerated radiation damage
studies with electron beam

m Study radiation hardness

m Performance assessment
eads to improved cell design

® Relevant quantity is the
electron fluence

m Main radiation effects are
total ionizing dose (TID) and
displacement damage dose
(DDD); lattice defects
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2D Radiation Scanner
m Performs 2D scans

m Faraday cup and
samples cycle in and
out of beam

m Faraday cup records
electron fluence
seen by samples

m Computer-controlled
via LabView Interface

m Also used for field
mapping




Van de Graaff Measured
Beam Profiles

1 Mel VDG Lateral Profile at 430 mm
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Irradiation of solar cells & electron fluence calibration

m Study to relate dose measured with alanine films to incident
electron fluence

Dosimetry calibration and cell
irradiation geometry

Full Monte Carlo simulation,
including scanner movement




Measured and computed
dose-to-fluence ratios

Measurements

Monte Carlo Results (per source particle)

Measured Dose [kGy] Fluence Run 1  Fluence/Dose Films (dose-to-water) Faraday Cup Fluence Fluence/Dose

39.57
39.13
38.13
37.57
39.13
38.86
Averages — 38.7317

Measurement/MC
0.9915

9.76397E+13
9.76397E+13
9.76397E+13
1.00868E+14
1.00868E+14
1.00868E+14
9.92536E+13

2.46752E+09
2.49526E+09
2.56070E+09
2.68479E+09
2.57776E+09
2.59567E+09
2.56362E+09

9.7778E-13 0.00252813 2.5856E+09



Radiation Grafting Applications
on MIRF

m Synthesis of Polymer Electrolyte
Membranes (PEM) for hydrogen fuel cells

— Involves grafting of proton-conducting
functionalized-monomers onto fluorocarbon
substrates

m Synthesis of membranes for extraction of
uranium from seawater
— grafting of vinylbenzyl chloride to nylon

fabrics attaches chemical groups that can
extract uranium from seawater



Radiation Grafting Process

Simultaneous Irradiation of Initiation Reactions Propagation/Termination
Substrate and Monomer

Substrate crosslinking
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Electron Beam Grafting Set-Up
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Uranium Extraction Concept

Chanel Tissot, UMD PhD Thesis, 2014

e e mEm e e
Imaginative artificial land faoility

Uranium has to be harvested from winged-nylon braids.

Seawater contains very little uranium, ~ 3 ppb, but there is a lot of it! There is a
total of about 4.5 billion tons of uranium trapped in seawater.



Modeling of Polystyrene Calorimeter in
Clinac 6 MV Beam in Water Phantom

m Compare with dose-to-water measured with calibrated
lonization chamber at same location

® Modeling agrees with measured ratio to about 1 %

Water Phantom with polystyrene Clinac 6 MV photons incident from left—

calorimeter probe at 10 cm depth uses previously-generated phase space file




Clinac Modeling
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New Frontiers



Cherenkov Imaging of Radiotherapy
Beams In a Water Phantom
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Cherenkov Effect

Equivalent to sonic boom for light e
Critical angle for Cerenkov emission:

= leciron
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The number of Cerenkov photons
per unit path per wavelength oc 1/2%

The number of emitted photons per cm =~ 750 sin?6.

— typical photon energy Is around 3 eV.
Cerenkov yield is only about 160 photons per cm
for ultra-relativistic electrons in water

Light output is VERY SMALL, but it's “free”!
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Cherenkov light images in a
water phantom

6 MV Cherenkov

6 MV (left) and 18 MV (right) photon images

Optical light field

| Photons

6 MeV

9 MeV

12 MeV

16 MeV

20 MeV

Electrons




10 cm x 10 cm field

1cm x 10 cm field

Water surface
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Cherenkov Light Output from
Different Materials
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20 MeV electrons incident from side of PMMA water tank




Titan Accelerator (AIMS Facility)

m Industrial 10 MeV, 17 KW e-beam accelerator

m Installation has begun

m Irradiation conditions will match those of industry
m High-dose dosimetry, sterilization applications etc.




NIST Facilities Summary

¢ photons

® electrons

VdG
Co-60 _
Titan
XRF |

ortho/mammo




Traceability for LEEB?

m Helt-Hansen et al. in Rad Phys Chem

o “Calorimetry for dose measurement at electron accelerators in the
80-120 keV energy range” 74 (2005) 354-371

 “Du —a new concept in industrial low-energy electron dosimetry”
79 (2010) 66-74

« —~10% uncertainty

m Galer et al., IMRP 2016 (Vancouver)

o “A primary standard calorimeter for low energy electron beams”
o “..Itis hoped to reduce the uncertainty ... to ~5% (k=2)”"
o https://imrp.quide/lectures/view/92



https://imrp.guide/lectures/view/92

Prospects for LEEB absolute dosimetry

Increasing Uncertainty
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Monte Carlo simulations of electron beams on 2 mm graphite wafer
NIST internal, Fred Bateman



Photonic thermometers

m Fiber Bragg Grating (FBG) sasalfian

~10 mm

~100 mK

m Nanofabricated devices

~10 um @
NI NI

Photonic crystal cavity Micro-loop
1Z. Ahmed et al., DOI 10.1081/E-ENN3-120054060

~1 mK?



Photonic thermometers - NOAC

NOAC — NIST on a Chip, 2017

“Photonic Dosimeter”

R. Fitzgerald, R. Tosh — Radiation Physics Division (NIST)
Z. Ahmed, N. Klimov — Sensor Science Division (NIST)

Objectives

» Assess radiation response — photons, electrons, ...
 Optimize for calorimetry and for dosimetry

» Devise calibration methodology

¢« ?

* Produce field-deployable sensors on a chip



Sensor arrays for calorimetry?




The Electronic Gray (e-Gy)

Marc Desrosiers, 24t CIRMS, http://www.cirms.orqg/pdf/cirms2016/CIRMS-2016-Desrosiers.pdf

dose

A

" ~cm, 10 MeV

4 —mm, 1 MeV

“h | ~um, 0.1 MeV

More details:
“Chip-scale calorimetry for industrial dosimetry”
lleana Pazos, NIST
25t CIRMS Meeting, 9:45 a.m., March 29, 2017



http://www.cirms.org/pdf/cirms2016/CIRMS-2016-Desrosiers.pdf
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