Accelerator-Based Standards and Applications in Industrial Dosimetry

Fred Bateman & Ronald Tosh, NIST CIRMS 2017, 3/28/17

Introduction

- Diagnostics and Quality Assurance
- Applications
- New Frontiers

Radiation Physics Division Electron Accelerators Electron Van de Graaff – Direct current beams up to $\sim 250 \ \mu A$ - Energy range ~500 keV to 2000 keV MIRF Linear Accelerator – Pulsed beams up to $\sim 20 \ \mu A$ Energy Range ~10 to 28 MeV Clinac Linear Accelerator – Pulsed therapy level beams - 6, 18 MV photons; 6, 9, 12, 16 and 20 MeV electrons

Van de Graaff Accelerator Installed 1965 (52, and still going strong!) Applications: Radiation hardness testing Materials modification Detector calibrations

Van de Graaff Parameters

Source: hot cathode pentode Operating mode: direct current Duty factor: 100% Beam current: variable up to ~0.25 mA

Clinac Accelerator
Medical radiotherapy accelerator
Certified "pre-owned", installed at NIST 2004
Applications include:

High-energy medical dosimetry
Detector calibrations

Clinac 2100C Beam Parameters

6 and 18 MV Photons

- 6, 9, 12, 16 and 20 MeV Electrons
- Dose Rates from 80 to 400 MU (cGy)/min
- Field Size: 0.5 x 0.5 cm to 40 x 40 cm (photon), 4 x 4 cm to 25 x 25 cm (electron)

Carousel and collimating jaws

3-D Radiation Scanner

MIRF Accelerator

- Radiotherapy accelerator installed ca. 1970 at Yale New Haven hospital
- Donated to NIST in 1993
- Adapted for "industrial" and research uses
 - Radiation hardness and radiation resistance
 - Materials modification (e.g. grafting)
 - Detector calibrations and radiation shielding tests
 - Fundamental physics studies

Dosimetry for Quality Assurance

 MIRF Beam Energy Validation
 Measure depth-dose curves in a water phantom with ion chamber

Use dosimetry protocols (ICRU, AAPM) to determine energy at phantom surface

Measured Depth-Dose Curves in Water

	Move c	ursor H	IERE fo	r option	menu												
150%							MIRE	ECAL	03171	7\100x	100CA12	0 03-17	-2017 @	09.21.4		% 100	17.5
							MIRF	ECAL	_03171	7\100x	100CA12	0 03-17	-2017 @	09.43.2	7.OPD	90	38.8
140% ⁻	Ť						MIRF_	ECAL	_03171	7\100x	100CA12	0 03-17	-2017 @	2 10:22.4	5.OPD	80	44.2
							MIRF_	ECAL	_03171	7\100x	100CA12	0 03-17	-2017 @	2 10.41.1	0.OPD	60	48.1
130%	÷															50	54.7
																40	57.8
120%	1															30	61.3
12070																10	75.7
																100	15.5
110%	Ť															90	27.3
																80	31.3
100%		-														60	37.3
																50	40.0
00% -	\downarrow		. \		· · · · ·											40	43.1
30 %																20	52.8
				1												10	62.4
80% -	Ť			· \												100	13.5
																90	47.1 55.4
70% -	+															70	61.0
																60	65.5
60%	+			. \												50	69.5
0070					$\langle \cdot \rangle$											30	77.1
					\ <mark>12</mark> M	ev	16 Me	V V	00 M-	., \						20	81.5
50% -	T				7	•••	TO ME	- Y	20 Me		24 MeV					10	88.2
											1					100	8.2
40% -	+															80	65.5
																70	73.3
30% -	<u> </u>				· \											60	79.4
30 %												4				40	89.4
																30	94.1
20% -	T					-	<u> </u>									20	99.3
																10	106.6
10% -							- ~~										
0%		+															
C C	cm '	1.0	2.0	3.0	4.0	5.0	6.0	7	0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0

MIRF Monte Carlo modeling

20 MeV Computed Energy Spectra

PhaseSpace: 10: :e-: Energy at Zstop

Measured vs. Computed Depth-Dose Curves

20 MeV Depth-Dose Curves in Water

MIRF Energy Calibration Results

Nominal E0 [MeV]	Energy at phantom surface	Meas R50 [cm]	Meas Energy [MeV]	% difference
12	9.52	3.98	9.55	0.31
16	13.26	5.47	13.13	-0.98
20	17.11	7.07	16.97	-0.82
24	20.92	8.53	20.47	-2.2

Clinac Accelerator QA

Clinac 6 MV depth-dose curves

Dosimetry Applications

Solar Cell Radiation Testing

- Accelerated radiation damage studies with electron beam
- Study radiation hardness
- Performance assessment leads to improved cell design
- Relevant quantity is the electron fluence
- Main radiation effects are total ionizing dose (TID) and displacement damage dose (DDD); lattice defects

Electron Radiation Effects

R.B. Horne et al., Space Weather 11, 169-186 (2013).

Electron degradation of solar cells in circular orbit at 20,000 km

Туре	Electron Fluence E>0.4 MeV (e ⁻ /cm ² /yr)	1-MeV electron equiv. fluence (e ⁻ /cm ² /yr)	Power Loss (5 yr)
Silicon	1.4E14	5.3E13	12 %
GaAs	1.4E14	1.1E13	4 %

D. Walker, R.Statler, Solar Cells 22, 69-77 (1987).

Typical 1E14 1 MeV session gives equivalent of 10(Si) 50(GaAs) years of exposure in about 5 mins!

2D Radiation Scanner

Performs 2D scans

- Faraday cup and samples cycle in and out of beam
- Faraday cup records electron fluence seen by samples
- Computer-controlled via LabView interface
- Also used for field mapping

Van de Graaff Measured Beam Profiles

1 MeV VDG Lateral Profile at 430 mm 200 -180 160 140 120 y-pos [mm] 100 80 60 · 40 -20 0 -0 20 180 200 x-pos [mm]

70 80 90 100 110 120 130 140 150

Irradiation of solar cells & electron fluence calibration

Study to relate dose measured with alanine films to incident electron fluence

Dosimetry calibration and cell irradiation geometry

Full Monte Carlo simulation, including scanner movement

Measured and computed dose-to-fluence ratios

	Measurements			Monte Carlo Results (per source particle)					
Film #	Measured Dose [kGy]	Fluence Run 1	Fluence/Dose	Films (dose-to-water)	Faraday Cup Fluence	Fluence/Dose			
	1 39.57	9.76397E+13	2.46752E+09						
:	2 39.13	9.76397E+13	2.49526E+09						
:	3 38.13	9.76397E+13	2.56070E+09						
11	o 37.57	1.00868E+14	2.68479E+09						
21	o 39.13	1.00868E+14	2.57776E+09						
31	o 38.86	1.00868E+14	2.59567E+09						
Averages \rightarrow	38.7317	9.92536E+13	2.56362E+09	9.7778E-13	0.00252813	2.5856E+09			
	Measurement/MC								
	0.9915								

Radiation Grafting Applications on MIRF

- Synthesis of Polymer Electrolyte Membranes (PEM) for hydrogen fuel cells
 - Involves grafting of proton-conducting functionalized-monomers onto fluorocarbon substrates
- Synthesis of membranes for extraction of uranium from seawater
 - grafting of vinylbenzyl chloride to nylon fabrics attaches chemical groups that can extract uranium from seawater

Radiation Grafting Process

Electron Beam Grafting Set-Up

Uranium Extraction Concept

Uranium has to be harvested from winged-nylon braids.

Seawater contains very little uranium, ~ 3 ppb, but there is a lot of it! There is a total of about 4.5 billion tons of uranium trapped in seawater.

Modeling of Polystyrene Calorimeter in Clinac 6 MV Beam in Water Phantom

- Compare with dose-to-water measured with calibrated ionization chamber at same location
- Modeling agrees with measured ratio to about 1 %

Water Phantom with polystyrene calorimeter probe at 10 cm depth

Clinac Modeling

6 MV Photon Trajectories

New Frontiers

Cherenkov Imaging of Radiotherapy Beams in a Water Phantom

Cherenkov Effect

- Equivalent to sonic boom for light
 Critical angle for Čerenkov emission: θ_c = arccos(1/βn)

 The number of Čerenkov photons
 - per unit path per wavelength $\propto 1/\lambda^2$

The number of emitted photons per cm ≈ 750 sin²θ_c

 typical photon energy is around 3 eV.

 Čerenkov yield is only about 160 photons per cm for ultra-relativistic electrons in water
 Light output is VERY SMALL, but it's "free"!

Cherenkov light images in a water phantom

Cherenkov Light Output from Different Materials

20 MeV electrons incident from side of PMMA water tank

Titan Accelerator (AIMS Facility)

- Industrial 10 MeV, 17 kW e-beam accelerator
- Installation has begun
- Irradiation conditions will match those of industry
- High-dose dosimetry, sterilization applications etc.

NIST Facilities Summary

Traceability for LEEB?

Helt-Hansen et al. in Rad Phys Chem

- "Calorimetry for dose measurement at electron accelerators in the 80-120 keV energy range" 74 (2005) 354-371
- "Dµ a new concept in industrial low-energy electron dosimetry" <u>79</u> (2010) 66-74
- ~10% uncertainty

Galer et al., IMRP 2016 (Vancouver)

- "A primary standard calorimeter for low energy electron beams"
- "...it is hoped to reduce the uncertainty ... to $\sim 5\%$ (k=2)"
- https://imrp.guide/lectures/view/92

Prospects for LEEB absolute dosimetry

Monte Carlo simulations of electron beams on 2 mm graphite wafer NIST internal, Fred Bateman

Photonic thermometers

Fiber Bragg Grating (FBG)

Resolution

~10 mm

Photonic crystal cavity

Micro-loop

¹Z. Ahmed et al., DOI 10.1081/E-ENN3-120054060

Photonic thermometers - NOAC

NOAC – NIST on a Chip, 2017

"Photonic Dosimeter"

R. Fitzgerald, R. Tosh – Radiation Physics Division (NIST)

Z. Ahmed, N. Klimov – Sensor Science Division (NIST)

Objectives

- Assess radiation response photons, electrons, ...
- Optimize for calorimetry and for dosimetry
- Devise calibration methodology
- ?
- Produce field-deployable sensors on a chip

Sensor arrays for calorimetry?

The Electronic Gray (e-Gy)

Marc Desrosiers, 24th CIRMS, http://www.cirms.org/pdf/cirms2016/CIRMS-2016-Desrosiers.pdf

