Power Demands for Curing Carbon Fiber Composites for Automotive Components

Anthony Berejka, Ionicorp⁺ Dan Montoney, Rapid Cure Technologies Dan Dispenza, Nordan Composites Technologies Rick Galloway, IBA Industrial, Inc. Marshall Cleland, IBA Industrial, Inc. Len Poveromo, Composite Prototyping Center Mark Driscoll, SUNY-ESF

Vehicle Light-weighting Nordan Composite Technologies – NYU Eco-marathon

Concept Zero – 103 kg carbon fiber prototype vehicle 1.1 horsepower engine = 60 km/l

X-ray Generation

Water cooled Tantalum target interposed between EB source and material to be treated

X-ray Penetration

X-rays effectively penetrate ~25cm unit density material Highest voltage industrial EB (10 MV) penetrates 3.8cm

X-ray Processing in use Since 2002

5 MV and 7 MV X-ray facility

Totes ready for X-ray processing

Decontaminating mail for the US Postal Service

Commercial EB Accelerator used for X-rays

7 MV 700 kW EB accelerator X-ray treatment in use since 2010

Bis-phenol A diacrylate

Metal biscuit trays

2 cm aluminum block on top

Carbon fiber shape X-ray cured in the mold

VARTM for test panels

Low viscosity formulation wetting fibers

Hand trowelled low viscosity epoxy-acrylate formulation

X-ray curing motorcycle fenders in molds

Cured fender with metal piece embedded between plies **Class A finish motorcycle fender**

Dynamic mechanical analysis

Heat deflection test No deflection up to 180° C

Wiring – enhanced temperature durability (under the hood) flame retardancy; lighter weight

- Wiring enhanced temperature durability (under the hood) flame retardancy; lighter weight
- Tire partial EB cure stabilizes cords during molding and curing reduction in amount of elastomer used; lighter weight

- Wiring enhanced temperature durability (under the hood) flame retardancy; lighter weight
- Tire partial EB cure stabilizes cords during molding and curing reduction in amount of elastomer used; lighter weight

Closed cell PE foam – headers; doors; cell size controlled

- Wiring enhanced temperature durability (under the hood) flame retardancy; lighter weight
- Tire partial EB cure stabilizes cords during molding and curing reduction in amount of elastomer used; lighter weight
- Closed cell PE foam headers; doors; cell size controlled
- Coatings pioneered EB curable coatings (not now in use)

- Wiring enhanced temperature durability (under the hood) flame retardancy; lighter weight
- Tire partial EB cure stabilizes cords during molding and curing reduction in amount of elastomer used; lighter weight
- Closed cell PE foam headers; doors; cell size controlled
- Coatings pioneered EB curable coatings (not now in use)

EB or UV curing in the future?

Vehicle Light-weighting Nordan Composite Technologies – NYU Eco-marathon

Concept Zero – 103 kg carbon fiber prototype vehicle 1.1 horsepower engine = 60 km/l

Automotive Component: Aston-Martin hood

Carbon fiber Aston-Martin hood now in use

Automotive Component

Matrix Materials: Bis-phenol A epoxies

Bis-phenol A epoxy

Bis-phenol A diacrylate

Matrix Materials: Bis-phenol A epoxies

Resin	<u>Epoxy</u>	Epoxy <u>diacrylate</u>
Density	1.16	1.17
Viscosity at 25°C, cps	~13,000	~190,000
Molecular weight, Daltons	377	393

Autoclave Curing

Commercial pre-preg was purchased from Cytec

Autoclave Curing

Composite Prototyping Center 2.4 m diameter, 6.1 m long autoclave Supplier's recommended cure cycle:

one hour ramp up at 1.7° C/minute to 121° C

one hour cure at 121° C

one hour cool down to room temperature

Autoclave Curing

Autoclave Curing – Total Power Demand

WP+[Wh]

Complete electrical demand: blowers, heaters, etc. Integrated power consumption = 192 kWh

Renegade produced the radiation curable pre-preg using a formulation provided by Rapid Cure Technologies

NYSERDA co-funded Power Demand Study

X-ray curing hood in mold

NYSERDA co-funded Power Demand Study

X-ray cured hood

X-ray Curing – Total Power Demand

Based on total power demand when operating the 7 MV, 700 kW accelerator in the X-ray mode, the electrical demand for curing a hood within its 1.49 m by 1.53 m mold passing in front of an X-ray target at 0.425 m/minute, using three passes (back-forth-back) to use full X-ray output, would be 25.26 kWh per hood

Using the 2.4 m diameter, 6.1 m long autoclave to its capacity to cure six hoods at a time, the power demand would be 32 kWh per hood (192 kWh/6)

X-ray curing would demand 21% less power per hood

X-ray Curing Advantages

- + Time to cure: 47 hoods per hour; 1.3 minutes per hood
- + Cure through embedded materials
- + Cure through thick cross-sections
- + Extended shelf-life of matrix materials Material made for feasibility study on August 23, 2005 used as a control over the years; pre-preg stored at room temperature
- + Cure activated by ionizing radiation no curatives

Time-Temperature Constraints of Epoxy Thermoset

Thermoset curing reaction kinetics – time at temperature

The Imperative of Vehicle Light-weighting

+ Carbon fiber composites have high specific strength

Weight-to-strength ratios for vehicle component materials

	Density	Specific Strength
Material	g/cm3	kN∙m/kg
Steel	7.86	254
Aluminum	2.80	214
Carbon fiber composite	1.58	785

The Imperative of Vehicle Light-weighting

- + Vehicle light-weighting using carbon fiber composites is the most straight-forward way to reduce green house gas emissions
 - 2.3 liters of CO₂ are emitted per liter of hydrocarbon fuel used

Carbon Fiber Composites

- + Carbon fiber composites do not require corrosion protection
- + Coatings on carbon fiber composites can be cured with non-thermal ultraviolet (UV) radiation

Carbon Fiber Composites

Acknowledgement

The authors are appreciative of the co-funding provided by the New York State Energy Research and Development Authority

Thank You

Questions

