# New ICRU Recommendations on Key Data for Ionizing Radiation Dosimetry

Stephen M. Seltzer

#### Radiation Physics Division National Institute of Standards and Technology







International Commission on Radiation Units & Measurements

# **International Harmonization in Ionizing Radiation**

of the ICRU



1875, Treaty of the Meter Establishes the CIPM (International Committee on Weights and Measures) and the laboratory **BIPM** (International Bureau of Weights and Measures)

1895, Roentgen discovers x rays 1898, Curie discovers radium

1925, ICRU is established From recommendations

1960, CCRI (Consultative Committee on Ionizing Radiation) is established

CCRI(I), Section I: x- and gamma-rays and charged particles CCRI(II), Section II: measurement of radionuclides CCRI(III), Section III: neutron measurements



# **Two-Part Harmony in Ionizing Radiation**



# **Reasons for This Work**

Work instituted at the request of the Consultative Committee on Ionizing Radiation, CCRI(I), primarily to address issues about parameters that affect air-kerma (or ionometric) standards.

Up till now, consensus values of parameters (that will soon be explained):

- For electrons produced by x and gamma rays, mean energy per ion pair formed in air,  $W/e = (33.97 \pm 0.05) \text{ J/C}$
- Use values of graphite-to-air electron-stopping-power ratios that are calculated based on the recommendations of ICRU Report 37 (1984)
- Noted a 1992 report of measurement result for  $I_{\text{graphite}}$  value that would change stopping-power ratios, and international standards for air kerma, by more than 1 %
- One actually measures the product of *W*/e and the graphite-to-air stopping-power ratio, so the two quantities are not independent

# **Effort Would Include Advancing Relevant Past ICRU Work** (among others)



# and be consistent with



#### ICRU Report KEY DATA FOR IONIZING-RADIATION DOSIMETRY: MEASUREMENT STANDARDS AND APPLICATIONS

#### **Report Committee**

Stephen Seltzer (Co-Chairman), National Institute of Standards and Technology Jose Fernandez-Varea (Co-Chairman), University of Barcelona Pedro Andreo, Karolinska University Hospital
Paul Bergstrom, National Institute of Standards and Technology David Burns, Bureau International des Poids et Mesures Ines Krajcar-Bronic, Rudjer Bošković Institute Carl Ross, National Research Council Francesc Salvat, University of Barcelona

#### **ICRU Sponsors**

Paul DeLuca, University of Wisconsin Mitio Inokuti (deceased), Argonne National Laboratory Herwig Paretzke, Helmholtz Zentrum

#### Consultants

H. Bichsel, University of WashingtonD. Emfietzoglou, University of Ioannina Medical SchoolH. Paul (deceased), Institute for Experimental Physics, Johannes-Kepler Universität

# Main Issues Considered by the Report Committee

**Charged Particles:** electrons, positrons, protons, alpha particles, carbon ions

- Mean excitation energies, *I*: air, graphite, liquid water
- Density effect in graphite
- Mean energy to produce an ion pair in air,  $W_{air}$

#### **Photons:**

- Photon cross sections: air, graphite, liquid water
- Photon attenuation, energy-transfer, and energyabsorption coefficients

# Why Do We Care? Illustrative Measurement Equations

To realize x-ray air kerma with a free-air chamber

$$K_{\text{air}} = (W_{\text{air}}/\text{e}) \frac{q_{\text{net}}}{m_{\text{air}}(1 - \overline{g}_{\text{air}})} \prod_{i} k_{i}$$

To realize gamma-ray air kerma with a graphite-walled Bragg-Gray cavity chamber

$$K_{\rm air} = \left(W_{\rm air}/e\right) \frac{q_{\rm net}}{m_{air}(1 - \overline{g}_{\rm air})} s_{\rm g,air} \left(\mu_{\rm en}/\rho\right)_{\rm air,g} \prod_i k_i$$

with notation

$$s_{\rm g,air} = \frac{\left(S_{\rm el}/\rho\right)_{\rm graphite}}{\left(S_{\rm el}/\rho\right)_{\rm air}}$$



polarizing voltage

and

$$(\mu_{\rm en}/\rho)_{\rm air,g} = \frac{\overline{(\mu_{\rm en}/\rho)}_{\rm air}}{\overline{(\mu_{\rm en}/\rho)}_{\rm graphite}}$$

# **Illustrative Measurement Equations**



To realize gamma-ray air kerma with a graphite-walled Bragg-Gray cavity chamber

$$K_{air} = \underbrace{(W_{air}/e)}_{m_{air}} \underbrace{q_{net}}_{m_{air}} \underbrace{(1 - \overline{g}_{air})}_{g_{air}} \underbrace{s_{g,air}}_{i} \underbrace{(\mu_{en}/\rho)_{air,g}}_{i} \underbrace{k_{i}}_{i}$$
where
$$s_{g,air} = \underbrace{(S_{el}/\rho)_{graphir}}_{(S_{el}/\rho)_{air}} \underbrace{Need I \text{ value and density effect}}_{density effect}$$
and
$$(\mu_{en}/\rho)_{air,g} = \underbrace{(\mu_{en}/\rho)_{air}}_{(\mu_{en}/\rho)_{graphir}} \underbrace{Need best \text{ values}}_{and uncertainty}$$
of ratio

## **Elaboration for Measurement Equations**



# **Key Data for Charged Particles**

- $W_{air}$  mean energy expended in dry air per ion pair formed
- *I*<sub>air</sub> *I*<sub>graphite</sub> mean excitation energy of the medium to calculate the electronic stopping power of charged particles *I*<sub>water</sub>
  - $\delta$  density-effect correction to the electronic stopping power of charged particles
  - $g_{air}$  the fraction, averaged over the distribution of the air kerma with respect to the electron energy, of the kinetic energy of electrons liberated by the photons that is lost in radiative processes (mainly bremsstrahlung) in dry air

# **Background: Mean Energy to Produce an Ion Pair in Air**

- Since the publication of ICRU Report 31 (1979), there have been a number of reports on the determination of  $W_{air}$  for electrons and on  $w_{air}$  in nitrogen and air for protons.
- ICRU Report 73, based on an analysis of Jones (2006), recommends a value of  $w_{air}/e$  for proton therapy of  $(34.2 \pm 0.1)$  J C<sup>-1</sup>. The Key Data Report Committee accepts this value and focuses mainly on  $W_{air}$  for electrons.



• A collection of precision experiments measures the product  $W_{\text{air}} \cdot s_{\text{graphite,air}}$ , so the recommended values of  $W_{\text{air}}$ ,  $I_{\text{graphite}}$ , and  $\rho_{\text{graphite}}$  are intertwined.

# **Background: Mean Excitation Energies**

The mean excitation energy *I* is a key and non-trivial parameter in Bethe stopping-power theory, used in charged-particle transport and dosimetry.

- ICRU Report 37 (1984) on e<sup>-</sup> and e<sup>+</sup> stopping powers recommended  $I_{\text{graphite}} = (78.0 \pm 4.3) \text{ eV}$ ,  $I_{\text{air}} = (85.7 \pm 1.2) \text{ eV}$ , and  $I_{\text{water}} = (75.0 \pm 1.8) \text{ eV}$ . These values retained in ICRU Report 49 (1993) for the calculation of p and  $\alpha$  stopping powers.
- Bichsel and Hiraoka (1992), analyzing energy loss of 70 MeV protons in 21 (mostly elemental) materials relative to Al, reported  $I_{\text{graphite}} = (86.9 \pm 1.2) \text{ eV}$ , and  $I_{\text{water}} = (79.7 \pm 0.5) \text{ eV}$ . Recent analyses of the dielectric-response function for liquid water recommend values of  $I_{\text{water}}$  larger than 75 eV.
- Considered by itself, such a change in the mean excitation energy for graphite can have a large effect in national air-kerma standards, ≈1.3 % for <sup>60</sup>Co, ≈1.5 % for <sup>137</sup>Cs, and ≈1.5 % for <sup>192</sup>Ir.
- As water is the universal dosimetry reference material,  $I_{water}$  is also considered.
- ICRU Report 73 considered stopping of ions heavier than He, <u>but not in the context</u> <u>of Bethe theory</u>.

# **Mean Excitation Energies**

|                        | Constitutent    | Fraction  | -7/^> -      | Recommended |                    |  |
|------------------------|-----------------|-----------|--------------|-------------|--------------------|--|
|                        | Constituent     | by weight | <z a=""></z> | l/eV        | u <sub>c</sub> /eV |  |
| _                      | N <sub>2</sub>  | 0.755267  | 0.499761     | 82.3        | 1.22               |  |
| air                    | 0 <sub>2</sub>  | 0.231450  | 0.500019     | 95.2        | 1.0                |  |
| data from 1955 to 2006 | Ar              | 0.012827  | 0.450586     | 187         | 3                  |  |
|                        | CO <sub>2</sub> | 0.000456  | 0.499889     | 86          | 1.3                |  |
|                        | Dry air         | 1         | 0.499190     | 85.7        | 1.2                |  |



# **Background: Density Effect**

- Graphite is not a simple homogeneous material. ICRU Report 37 (1984) recommended the use of the bulk density in the calculation of the density effect, but considers also treating inhomogeneous materials as a mixture.
- Applied to the case of graphite, a mixture-with-air approach gives values of the electronic stopping power that are the same to four significant figures as those for pure graphite with the crystallite density  $\rho_{\text{graphite}} = 2.265 \text{ g/cm}^3$ . This is consistent with the suggestion of MacPherson (1998) who found better agreement with the measured energy loss of 6 MeV to 28 MeV electrons in graphite when they use a crystallite density of 2.26 g/cm<sup>3</sup> rather than the bulk density ( $\approx 1.7 \text{ g/cm}^3$ ) for the calculation of the density-effect correction.
- The use of the crystallite density rather than the bulk density changes the graphite-to-air stopping-power ratio associated with graphite-wall air-ionization cavity chambers by  $\approx 0.2$  % for <sup>60</sup>Co,  $\approx 0.1$  % for <sup>137</sup>Cs, and  $\approx 0.06$  % for <sup>192</sup>Ir.

# **Background:** $g_{air}$

- $g_{air}$  is an average over the bremsstrahlung yield *Y* of secondary electrons slowing down in air
- Y is evaluated as  $Y(T_0) = \int_0^{T_0} \frac{S_{\text{rad}}(T)}{S_{\text{el}}(T) + S_{\text{rad}}(T)} dT$
- $S_{rad}$  is the radiative stopping power, which depends on bremsstrahlung-production cross sections
- bremsstrahlung-production cross sections adopted from work of Seltzer and Berger (1985), which is slightly different from that used in ICRU Report 37 (1984)
- final effect on  $g_{air}$  is of order 0.5 % or less and  $g_{air}$  itself is about 0.0033 for <sup>60</sup>Co air kerma, so effect on 1-  $g_{air}$  is negligible

# Summary of Recommendations Charged Particles

|                              | Previous | This Report               | Standard<br>uncertainty    | Relative<br>standard<br>uncertainty<br>(%) | Relative<br>change<br>(%) | Comments                                  |
|------------------------------|----------|---------------------------|----------------------------|--------------------------------------------|---------------------------|-------------------------------------------|
| $W_{\rm air}$ for electrons  | 33.97 eV | 33.97 eV                  | 0.12 eV                    | 0.35                                       | 0                         | Asymptotic value                          |
| $W_{\rm air}$ for protons    | 34.23 eV | 34.44 eV                  | 0.14 eV                    | 0.4                                        | 0.6                       | Asymptotic value                          |
| W <sub>air</sub> for C ions  | 34.50 eV | 34.71 eV                  | 0.52 eV                    | 1.5                                        | 0.6                       | Asymptotic value                          |
| <i>h</i> <sub>w</sub> (4 °C) | 0        | 0                         |                            | 0.15                                       | 0                         | Low-LET radiations                        |
| <i>G</i> (Fe <sup>3+</sup> ) |          | 1.62 μmol J <sup>-1</sup> | 0.008 µmol J <sup>-1</sup> | ~0.5                                       |                           | High energy electrons                     |
| I <sub>air</sub>             | 85.7 eV  | 85.7 eV                   | 1.2 eV                     | 1.40                                       | 0                         |                                           |
| Ig                           | 78 eV    | 81 eV                     | 1.8 eV                     | 2.22                                       | 3.8                       | graphite $\rho = 2.265 \text{ g cm}^{-3}$ |
| I <sub>w</sub>               | 75 eV    | 78 eV                     | 2 eV                       | 2.56                                       | 4.0                       |                                           |
|                              |          |                           |                            |                                            |                           |                                           |

The analysis of Burns (2012) results in the best estimate of  $W_{air} s_{g,air} = 33.72 \text{ eV}$  for <sup>60</sup>Co radiation, determined with a relative standard uncertainty of 0.08 %. Adoption of this result would reduce the air-kerma determination for <sup>60</sup>Co graphite-cavity standards by about 0.7 %, due to the change in  $s_{g,air}$ .

# **Recommendations in Context**

**Density Effect** 

For graphite use the crystallite density,  $\rho_{\text{graphite}} = 2.265 \text{ g/cm}^3$ 

# **Mean Excitation Energies**

<u>Air</u>

•  $I_{air} = (85.7 \pm 1.2) \text{ eV}$ .  $I_{air}$  unchanged but with smaller uncertainty.

# **Graphite**

Reported *I* values range from about 71 eV to 87 eV. Recommendation by the Committee is

•  $I_{\text{graphite}} = (81.0 \pm 1.8) \text{ eV}$ . Previous was  $(78 \pm \sim 4) \text{ eV}$ 

#### <u>Water</u>

Reported I values range from about 75 eV to 82 eV. Recommendation by the Committee is

•  $I_{\text{water}} = (78 \pm 2) \text{ eV}$ . Previous was  $(75 \pm 2) \text{ eV}$ 

## Mean Energy to Produce an Ion Pair in Air by Electrons

•  $W_{\text{air}} = (33.97 \pm 0.12) \text{ eV}$ . No change in value, but now has a larger uncertainty

#### **Bethe Theory for Heavy Charged Particles**

Electronic (collision) stopping power:

$$\frac{1}{\rho}S_{\rm el} = \frac{4\pi r_{\rm e}^2 m_{\rm e}c^2}{\beta^2} \frac{Z}{uA} z^2 B(\beta)$$

where stopping number is



#### Sample (Abridged) Stopping-Power/Range Tables

**Electrons** in liquid water, I = 78 eV

fractional change per fractional change in *I* 

| Т        | $S_{ m el}/ ho$ | $S_{ m rad}/ ho$                    | $S_{ m tot}/ ho$ | $r_0/\rho$         | Y         | δ         | ∂(log            | )/∂(lo     | g <i>I</i> ) |
|----------|-----------------|-------------------------------------|------------------|--------------------|-----------|-----------|------------------|------------|--------------|
| MeV      | Ν               | MeV cm <sup>2</sup> g <sup>-1</sup> |                  | g cm <sup>-2</sup> |           |           | $S_{\rm el}/ ho$ | $r_0/\rho$ | Y            |
| 0.001    | 1.181E+02       | 2.830E-03                           | 1.181E+02        | 4.235E-06          | 1.199E-05 | 0.000E+00 | -0.370           | 0.370      | 0.370        |
| 0.002    | 7.436E+01       | 3.307E-03                           | 7.436E+01        | 1.524E-05          | 2.318E-05 | 0.000E+00 | -0.295           | 0.336      | 0.334        |
| 0.005    | 3.806E+01       | 3.737E-03                           | 3.807E+01        | 7.536E-05          | 5.253E-05 | 0.000E+00 | -0.232           | 0.270      | 0.267        |
| 0.010    | 2.239E+01       | 3.890E-03                           | 2.239E+01        | 2.537E-04          | 9.476E-05 | 0.000E+00 | -0.200           | 0.229      | 0.227        |
| 0.020    | 1.308E+01       | 3.939E-03                           | 1.309E+01        | 8.632E-04          | 1.670E-04 | 0.000E+00 | -0.176           | 0.198      | 0.197        |
| 0.050    | 6.564E+00       | 4.011E-03                           | 6.568E+00        | 4.348E-03          | 3.442E-04 | 0.000E+00 | -0.152           | 0.168      | 0.168        |
| 0.100    | 4.093E+00       | 4.211E-03                           | 4.097E+00        | 1.439E-02          | 5.851E-04 | 0.000E+00 | -0.139           | 0.151      | 0.151        |
| 0.200    | 2.779E+00       | 4.771E-03                           | 2.784E+00        | 4.512E-02          | 9.831E-04 | 0.000E+00 | -0.127           | 0.138      | 0.137        |
| 0.500    | 2.025E+00       | 7.228E-03                           | 2.032E+00        | 1.774E-01          | 1.976E-03 | 0.000E+00 | -0.113           | 0.123      | 0.122        |
| 1.000    | 1.845E+00       | 1.276E-02                           | 1.858E+00        | 4.384E-01          | 3.577E-03 | 2.086E-01 | -0.061           | 0.097      | 0.090        |
| 2.000    | 1.821E+00       | 2.666E-02                           | 1.848E+00        | 9.811E-01          | 7.071E-03 | 7.703E-01 | -0.036           | 0.068      | 0.055        |
| 5.000    | 1.891E+00       | 7.922E-02                           | 1.970E+00        | 2.554E+00          | 1.910E-02 | 1.906E+00 | -0.022           | 0.042      | 0.029        |
| 10.000   | 1.967E+00       | 1.816E-01                           | 2.148E+00        | 4.980E+00          | 4.077E-02 | 2.928E+00 | -0.018           | 0.031      | 0.021        |
| 20.000   | 2.045E+00       | 4.079E-01                           | 2.453E+00        | 9.327E+00          | 8.357E-02 | 4.039E+00 | -0.013           | 0.022      | 0.015        |
| 50.000   | 2.139E+00       | 1.145E+00                           | 3.284E+00        | 1.985E+01          | 1.920E-01 | 5.665E+00 | -0.005           | 0.014      | 0.007        |
| 100.000  | 2.202E+00       | 2.437E+00                           | 4.640E+00        | 3.259E+01          | 3.190E-01 | 6.998E+00 | -0.001           | 0.009      | 0.003        |
| 200.000  | 2.263E+00       | 5.103E+00                           | 7.366E+00        | 4.955E+01          | 4.701E-01 | 8.367E+00 | 0.000            | 0.006      | 0.001        |
| 500.000  | 2.341E+00       | 1.323E+01                           | 1.558E+01        | 7.692E+01          | 6.620E-01 | 1.019E+01 | 0.000            | 0.004      | 0.000        |
| 1000.000 | 2.401E+00       | 2.691E+01                           | 2.931E+01        | 9.994E+01          | 7.764E-01 | 1.158E+01 | 0.000            | 0.003      | 0.000        |

#### Sample (Abridged) Stopping-Power/Range Tables

**Protons** in liquid water, I = 78 eV

fractional change per fractional change in *I* 

| Т       | $S_{ m el}/ ho$ | $S_{ m nuc}/ ho$                     | $S_{ m tot}/ ho$ | $r_0/ ho$          | Detour | $\partial \log/\partial$ | $\log(I)$  |
|---------|-----------------|--------------------------------------|------------------|--------------------|--------|--------------------------|------------|
| MeV     |                 | MeV cm <sup>-2</sup> g <sup>-1</sup> |                  | g cm <sup>-2</sup> | factor | $(S_{\rm el}/\rho)$      | $r_0/\rho$ |
| 0.2     | 6.585E+02       | 9.016E-01                            | 6.594E+02        | 2.967E-04          | 0.9460 | -0.081                   | 0.006      |
| 0.5     | 4.065E+02       | 4.043E-01                            | 4.069E+02        | 8.945E-04          | 0.9790 | -0.394                   | 0.220      |
| 1.0     | 2.574E+02       | 2.173E-01                            | 2.577E+02        | 2.487E-03          | 0.9905 | -0.311                   | 0.298      |
| 2.0     | 1.569E+02       | 1.157E-01                            | 1.570E+02        | 7.639E-03          | 0.9952 | -0.256                   | 0.283      |
| 5.0     | 7.842E+01       | 4.970E-02                            | 7.847E+01        | 3.656E-02          | 0.9974 | -0.206                   | 0.235      |
| 10.0    | 4.532E+01       | 2.603E-02                            | 4.535E+01        | 1.240E-01          | 0.9980 | -0.179                   | 0.203      |
| 20.0    | 2.589E+01       | 1.356E-02                            | 2.591E+01        | 4.289E-01          | 0.9983 | -0.159                   | 0.177      |
| 50.0    | 1.238E+01       | 5.691E-03                            | 1.238E+01        | 2.240E+00          | 0.9985 | -0.140                   | 0.152      |
| 100.0   | 7.250E+00       | 2.944E-03                            | 7.253E+00        | 7.759E+00          | 0.9987 | -0.128                   | 0.138      |
| 200.0   | 4.470E+00       | 1.522E-03                            | 4.471E+00        | 2.609E+01          | 0.9988 | -0.119                   | 0.127      |
| 500.0   | 2.731E+00       | 6.367E-04                            | 2.732E+00        | 1.176E+02          | 0.9990 | -0.109                   | 0.116      |
| 1000.0  | 2.203E+00       | 3.300E-04                            | 2.204E+00        | 3.268E+02          | 0.9992 | -0.096                   | 0.108      |
| 2000.0  | 2.017E+00       | 1.715E-04                            | 2.017E+00        | 8.079E+02          | 0.9994 | -0.052                   | 0.084      |
| 5000.0  | 2.029E+00       | 7.251E-05                            | 2.030E+00        | 2.302E+03          | 0.9996 | -0.027                   | 0.052      |
| 10000.0 | 2.124E+00       | 3.788E-05                            | 2.125E+00        | 4.707E+03          | 0.9998 | -0.019                   | 0.037      |

#### Sample (Abridged) Stopping-Power/Range Tables

#### **Carbon ions** in liquid water, I = 78 eV

fractional change per fractional change in *I* 

| <i>T</i> | $S_{ m el}/ ho$ | $\mathrm{S}_{\mathrm{nuc}}/ ho$     | ${ m S}_{ m tot}/ ho$ | $r_0/\rho$         | $\partial(\log)/\partial($ | (log <i>I</i> ) |           |
|----------|-----------------|-------------------------------------|-----------------------|--------------------|----------------------------|-----------------|-----------|
| MeV      | ]               | MeV cm <sup>2</sup> g <sup>-1</sup> |                       | g cm <sup>-2</sup> | $S_{ m el}/ ho$            | $r_0/\rho$      |           |
| 0.5      | 4.198E+03       | 1.001E+02                           | 4.298E+03             | 1.911E-04          | 0                          | 0 -             | ]         |
| 1        | 6.116E+03       | 5.808E+01                           | 6.174E+03             | 2.864E-04          | 0                          | 0               |           |
| 2        | 8.139E+03       | 3.302E+01                           | 8.172E+03             | 4.238E-04          | 0                          | 0               | based on  |
| 5        | 8.372E+03       | 1.529E+01                           | 8.387E+03             | 7.708E-04          | 0                          | 0               | empirical |
| 10       | 6.926E+03       | 8.428E+00                           | 6.934E+03             | 1.430E-03          | 0                          | 0               | icsuits   |
| 20       | 5.284E+03       | 4.603E+00                           | 5.289E+03             | 3.100E-03          | 0                          | 0 _             | J         |
| 50       | 3.134E+03       | 2.043E+00                           | 3.136E+03             | 1.072E-02          | -0.179                     | 0.048           |           |
| 100      | 1.855E+03       | 1.094E+00                           | 1.856E+03             | 3.222E-02          | -0.188                     | 0.147           |           |
| 200      | 1.069E+03       | 5.806E-01                           | 1.070E+03             | 1.063E-01          | -0.165                     | 0.165           |           |
| 500      | 5.123E+02       | 2.468E-01                           | 5.126E+02             | 5.438E-01          | -0.143                     | 0.153           |           |
| 1000     | 2.984E+02       | 1.271E-01                           | 2.985E+02             | 1.881E+00          | -0.131                     | 0.140           |           |
| 2000     | 1.813E+02       | 6.474E-02                           | 1.814E+02             | 6.369E+00          | -0.121                     | 0.129           |           |
| 5000     | 1.068E+02       | 2.615E-02                           | 1.068E+02             | 2.940E+01          | -0.110                     | 0.117           |           |
| 10000    | 8.311E+01       | 1.312E-02                           | 8.312E+01             | 8.401E+01          | -0.102                     | 0.110           |           |

#### **Changes in Electronic Stopping Powers**



# **Anticipated Impact of Recommendations**

#### **Measurement Standards:**

The recommended changes for graphite *I* and density would result in a relative decrease of about 0.6 % - 0.7 % in international measurement standards for <sup>60</sup>Co, <sup>137</sup>Cs, and <sup>192</sup>Ir air kerma.

Estimated relative changes (%) in NIST air-kerma standards

| <sup>60</sup> Co  | -0.66 |
|-------------------|-------|
| <sup>137</sup> Cs | -0.61 |
| <sup>192</sup> Ir | -0.59 |

### **Particle Therapy:**

For therapy energies, the recommended change in  $I_{water}$  from 75 eV to 78 eV results in an increase in the csda range of:

- 0.08 mm for 20 MeV electrons
- 1.3 mm for 200 MeV protons
- 0.9 mm for C ions (300 MeV/u)

# **Anticipated Impact of Recommendations (cont'd)**

#### Clinical Dosimetry: Estimates of changes in determination of $D_w$

| Radiation Type                                 | Relative<br>change<br>(%) |                          |
|------------------------------------------------|---------------------------|--------------------------|
| $\Delta D_{\rm w}$ for photons                 | -0.2                      | For low beam qualities.  |
|                                                | -0.5                      | For high beam qualities. |
| $\Delta D_{\rm w}$ for electrons               | -0.4                      | Constant Point Dan esta  |
| $\Delta D_{\rm w}$ for protons and carbon ions | -0.5                      |                          |

## **Corrections for Low-Energy X Rays**



# Thank You

There is of course more in the ICRU Report. I'm not sure when it will be published.