The Basic Interaction Physics of Therapeutic Proton Beams

Wayne Newhauser, Ph. D.

LSU/MBPCC

Facilities in Clinical Operation and No. of Patients Treated (1955-2014)

W. Newhauser, LSU/MBPCC

Objectives

- Review basic proton interaction physics
- Understand why protons offer some clinical advantages
- Introduction to some proton therapy equipment and technology

Physics Overview

- Basic interaction physics
 - -Energy loss (penetration range)
 - -Scattering (particle trajectory)
 - -Range straggling
 - -Bragg curves
 - -Spread out Bragg Peaks

Energy Transfer Mechanisms

Most *energy loss* is via *coulombic* interactions with atomic electrons. *Small deflections* are caused by *coulombic* interactions with nucleus. Nuclear reactions play only a small role.

Energy-Loss Rate, Proton Range

R / g cm⁻²

Range Energy Relation (Geiger's Rule)

For protons in water where E < 200 MeV.

- $r_{\rm e}$: classical electron radius = 2.817 × 10⁻¹³ cm
- $m_{\rm e}$: electron mass
- $N_{\rm a}$: Avogadro's number = $6.022 \times 10^{23} \, \mathrm{mol}^{-1}$
- *I*: mean excitation potential
- Z: atomic number of absorbing material
- A: atomic weight of absorbing material

- ρ: density of absorbing material
 z: charge of incident particle in units of e
- $\beta = v/c \text{ of the}$ incident particle $\gamma = 1/[/1 - \beta^2]$
- δ : density correction
- C: shell correction
- W_{max} : maximum energy transfer in a single collision.

W. R. Leo. Techniques for Nuclear and Particle Physics Experiments. Springer, Berlin, 1987.

 $-\frac{dE}{dx} = 2\pi N_{\rm a} r_{\rm e}^2 m_{\rm e} c^2 \rho \frac{Z}{A} \frac{z^2}{\beta^2} \left| \ln \left(\frac{2m_{\rm e} \gamma^2 v^2 W_{\rm max}}{I^2} \right) - 2\beta^2 - \delta - 2\frac{C}{Z} \right|$

W. R. Leo. Techniques for Nuclear and Particle Physics Experiments. Springer, Berlin, 1987.

Dependencies Ion charge: Ion velocity: Ion mass: Absorber:

 z^{2} 1/ v^{2} (1/ β^{2} relativistically) Buried in the W_{max} term $N_{\text{a}} \rho Z/A = N_{\text{e}} = \text{e}^{-}$ density ln (1/ I^{2})

- Mean excitation potential (I)
 - Main parameter of Bethe Bloch formula
 - Theoretically related to logarthmic average of orbital frequencies of electrons, weighted by oscillator strengths of atomic levels.
 - Very difficult theoretical problem. In practice, deduced by fitting measured d*E*/dx to Bethe Bloch formula.

- *Bloch Correction:* Important for low velocity particles. Takes into account departure from first-order Born approximation used by Bethe.
- *Barkas Correction:* Particles of opposite charge have different stopping powers.
- *Shell Correction:* as projectile slows down to velocity of orbital electron, assumption that electrons are stationary breaks down.
- *Density-Effect Correction: E*-field of ion polarizes the atoms along trajectory. Polarization shields distant electrons from full *E* field. Stopping power is reduced.

ICRU Report 49, 1993

W. Newhauser, LSU/MBPCC

Range Straggling

W. Newhauser, LSU/MBPCC

Comparison of <u>SOBP Model</u> with Experimental Data

Pristine Peaks from NPTC cyclotron

W. Newhauser, LSU/MBPCC

Range Straggling Smears out the Bragg Peak

Multiple Coulomb Scattering

Highland's approximation of Moliere's theory as a gaussian:

$$P(r)\mathrm{d}r = \frac{6r}{\langle \theta^2 \rangle t^2} \exp\left(\frac{-3r^2}{\langle \theta^2 \rangle t^2}\right) \mathrm{d}r$$

Lateral Displacement $r_{\rm RMS} = 0.029 \ R^{.896}$

Single Proton Beam

138 MeV initial mean beam energy

Gaussian initial energy distribution ($\sigma_E = 0.5$ mev).

Gaussian axially symmetric dose profile $(\sigma = 0.7 \text{ cm})$

Making a Spread-Out Bragg Peak

W. Newhauser, LSU/MBPCC

Making SOBPs

Range Modulator Wheel

Andy Koehler (Harvard Cyclotron Lab.)

SOBPs: Model v Measurement

W. Newhauser, LSU/MBPCC

Compare CAX PDD

W. Newhauser, LSU/MBPCC

Rhabdomyosarcoma of Paranasal Sinus (7 y old boy)

Jose 107 B А 112 ⁹⁰ 160 MeV 90 6 MV 80 80 Protons Photons 70 70 (2 field) 60 (3 field) 60 50 50 40 40 30 30 Dose % Dose С D 110 107 90 90 Proton Photon 80 80 IMRT 70 70 **IMRT** (9 field) 60 60 (9 field) 50 50 40 40 30 30

Miralbell et al., IJROBP 2002

Review of Proton Beam Properties

- 1) Proton beams stop no exit dose
- 2) Laterally, proton beams have sharp penumbra
- 3) Proton beams provide very uniform target dose distributions
- 4) Proton dose distributions can be made to conform tightly to irregular target shapes in all three dimensions
- 4) Clinically, the radiobiology of proton beams is almost identical to that of photon beams
- 5) Hence, protons offer a significant clinical advantage and it is mainly due the ability sharpshoot with dose.

Dynamic Beam Scanning Sweep small proton beam over a large tumor using magnetic beam deflection. Modulate beam range and fluence for each spot.

A full set, with a homogenous dose conformed distally <u>and</u> proximally

Images courtesy of Eros Pedroni, PSI (Switzerland) W. Newhauser, LSU/MBPCC

Scanning Nozzle

IMPT versus Passive Scattered Proton Therapy

Passively Scattered Proton Beam

(a)

Actively Scanned Proton Beam

Matsuda et al. 2009, Hitachi Reviews 58 (5)

For More Details ...

OPEN ACCESS

IOP Publishing | Institute of Physics and Engineering in Medicine

Phys. Med. Biol. 60 (2015) R155-R209

Physics in Medicine & Biology

doi:10.1088/0031-9155/60/8/R155

Topical Review

The physics of proton therapy

Wayne D Newhauser^{1,2} and Rui Zhang^{1,2}

 ¹ Medical Physics Program, Department of Physics and Astronomy, Louisiana State University, 202 Nicholson Hall, Baton Rouge, LA 70803, USA
 ² Mary Bird Perkins Cancer Center, 4950 Essen Lane, Baton Rouge, LA 70809, USA

E-mail: newhauser@lsu.edu

Received 5 February 2014, revised 29 September 2014 Accepted for publication 28 October 2014 Published 24 March 2015

