NRC·CNRC

Transport under magnetic fields with the EGSnrc simulation toolkit

Ernesto Mainegra-Hing, Frédéric Tessier, Blake Walters

Measurement Science and Standards, National Research Council Canada

Hugo Bouchard

Université de Montréal and National Physics Laboratory (UK)

Can EGSnrc simulate ionization chamber response in the presence of magnetic fields accurately?

MRI

╋

External RT

MRI-guided Radiation Therapy

Magnetic field effect on dose distribution

pencil beam of 10 MeV electrons

water

air

electron tracks

pencil beam of 10 MeV electrons

electron tracks

air

water

pencil beam of 10 MeV electrons

air

electron return effect

water

Implementation

Monte Carlo Transport of Electrons and Photons

Edited by Theodore M. Jenkins, Walter R. Nelson, and Alessandro Rindi

> ETTORE MAJORANA INTERNATIONAL SCIENCE SERIES Series Editor: Antonino Zichichi

> > PHYSICAL SCIENCES

Orange Bible

19.1 INTRODUCTION

In this chapter, we discuss the fundamentals of electron transport in static external electric and magnetic fields in vacuum and dense media. By "static" and "external" is meant that macroscopic \vec{E} and/or \vec{B} fields are set up in the region where the electron transport is taking place. For example, a high-energy particle detector may be placed in a constant magnetic field so that the momentum of charged particles may be analyzed. The external fields are considered to be static in the sense that they do not change with time during the course of the simulations. This is not a fundamental constraint, but is imposed for simplicity. The bulk of the discussion concerns the theoretical viability of performing electron transport in dense media in the presence of external fields. The trajectories of particles in this case can be quite complicated. The particles can be subjected to a myriad of forces — de-accelerations due to inelastic processes with orbital electrons and nuclei, elastic deflections due to attraction or repulsion in the nuclear electric field, accelerations or de-accelerations by the external electric field, and deflections by the external electric and magnetic fields.

In comparison to the effects of the internal processes of multiple scattering and inelastic collisions, the effect of the external fields can be quite dramatic. Electric field strengths can be as high as $2 \text{ MV}/(\text{g/cm}^2)$. The rate of a charged particle's change in energy due to this field can be equal in magnitude to the rate of energy loss of highenergy electrons in matter. We wish to establish a method, even if it is a "brute force" one, that will allow us to do charged-particle transport under these circumstances. We do not wish to treat the effects of the external fields as perturbations on the field-free transport in media. Yet, we don't wish to discard all the theoretical work that has been achieved in field-free transport. Rather, we shall retain what we know about inelastic energy-loss mechanisms and multiple scattering, and attempt to include the effect of the external fields, albeit in a simple-minded fashion.

We commence the chapter with a "review" discussion of charged-particle transport in external fields. We set up the equations and then solve them in vacuum. The vacuum solutions will play a role in the benchmarking of the differential equations as modelled in the Monte Carlo code. We then prove formally under which circumstances the vacuum transport equations can be "tacked on" to the field-free transport with little error. In

Equation of motion

The equation of motion in the force formulation for transport in a medium under the effect of an EM field can be written as

$$\vec{v} = \vec{v}_0 + \frac{1}{m_0 \gamma(E)} \int_0^t dt' \{ \vec{F}_{el}(E(t')) + \vec{F}_{in}(E(t')) + \vec{F}_{em}(\vec{x}(t'), E(t'), \hat{u}(t')) \}$$

stochastic deterministic

Bielajew's implementation

Under the assumption of **very small steps** such that:

- Field does not changes significantly
- Energy loss negligible
- Negligible angular deflection

the equation of motion becomes to first order:

$$\vec{v} = \vec{v}_0 + \frac{t}{m_0 \gamma(E_0)} \{ \vec{F}_{el}(E_0) + \vec{F}_{in}(E_0) + \vec{F}_{em}(\vec{x}_0, E_0, \hat{u}_0) \}$$

Bielajew's implementation

Under the assumption of **very small steps** such that:

- Field does not changes significantly
- Energy loss negligible
- Negligible angular deflection

the equation of motion becomes to first order:

$$\vec{v} = \vec{v}_0 + \Delta \vec{v}_{MC} + \frac{t}{m_0 \gamma(E_0)} \{ \vec{F}_{em}(\vec{x}_0, E_0, \hat{u}_0) \}$$

Interactions with medium and external field treated independently!

Bielajew's implementation

Expressing the time t as a function of the total path length Δs to first order gives

$$\Delta \vec{x} = \hat{u}_0 \Delta s + \frac{\Delta s}{2} \Delta \hat{u}$$

Neglecting lateral deflection $\Delta s/2$ one gets for the position change

$$\Delta \vec{x} = \hat{u}_0 \Delta s$$

MC step

the change in the particle's direction is

$$\Delta \hat{u} \neq \Delta \hat{u}_{MC} + \Delta \hat{u}_{em}$$

Fano test

Note on the Bragg-Gray Cavity Principle for Measuring Energy Dissipation

U. FANO

National Bureau of Standards, Washington, D. C.

238

U. FANO

that, whereas the compression increases the number of secondary electrons generated per unit volume, it reduces the "range" of each electron by an equal factor.⁴ In fact, the argument rests on a much more detailed theorem which has been often implied but perhaps never stated in full.

Theorem: In a medium of given composition exposed to a uniform flux of primary radiation (such as X-rays or neutrons) the flux of secondary radiation is also uniform and *independent of the density* of the medium as well as of the density variations from point to point.

U. Fano (*1954*) Note on the Bragg-Gray Cavity Principle for Measuring Energy Dissipation. Radiation Research: June 1954, Vol. 1, No. 3, pp. 237-240.

Some Comments on Fano's Theorem¹

L. V. SPENCER

National Bureau of Standards, Washington, D. C. 20234

REVISED STATEMENT OF THE THEOREM, AND FANO'S PROOF

In what follows, we use "fluence" rather than the more accurate but longer term "differential fluence," in a manner very similar to Fano's use of "flux." Let us begin with a modified statement of the *Theorem*:

In an unbounded medium of uniform composition containing a source of electrons which is everywhere proportional to the local density, the fluence of electrons is uniform and is independent of density variations.

Fano theorem provides a rigorous test

- Uniform electron source per unit mass N_0/m_T
- Medium of uniform composition but varying density

$$D = N_0/m_T \cdot \langle E \rangle$$

where $\langle E \rangle$ is the average energy emitted

Fano theorem provides a rigorous test

If the source emits electrons of energy E_0 :

$$D/N_0 = E_0/m_T$$

For a MC simulation fulfilling Fano conditions, the dose per particle in *any* region *i* is expected to be:

$$D_i/N_0 = E_0/m_T$$

Use this to verify the accuracy of the electron transport algorithm!

Is Fano's theorem valid in the presence of magnetic fields ?

Phys. Med. Biol. 60 (2015) 4963-4971

doi:10.1088/0031-9155/60/13/4963

Lorentz force correction to the Boltzmann radiation transport equation and its implications for Monte Carlo algorithms

Hugo Bouchard¹ and Alex Bielajew²

¹ Acoustics and Ionising Radiation Team, National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK

² Department of Nuclear Engineering and Radiological Sciences, The University of Michigan, Ann Arbor, MI 48109, USA

"Fano's theorem does not hold in the presence of static and constant external EM fields. This has the unfortunate consequence of invalidating the Fano cavity test ..."

Phys. Med. Biol. 60 (2015) 6639-6654

doi:10.1088/0031-9155/60/17/6639

Reference dosimetry in the presence of magnetic fields: conditions to validate Monte Carlo simulations

Hugo Bouchard¹, Jacco de Pooter², Alex Bielajew³ and Simon Duane¹

1. Isotropic uniform source per unit mass

2. Magnetic field B scales with mass density

in water phantom

Fano test 1 $d > R_{CSDA}(E_{max})$ (PTW30013) water 20 PMMA 9 Air A Same material, different densities

12 regions

Fano test 1 for a PTW30013

water

PMMA

Imm Air

D

Same material, different densities

12 regions

Powerful diagnostic tool !!!

Finding & B

Efficiency

Measuring efficiency

$\xi = \frac{1}{s^2 \times T_{CPU}}$

How long needed to achieve desired uncertainty?

Conclusionss

Transport in electromagnetic field is available in EGSnrc as a first-order correction on the velocity.

Ionization chamber dose response calculations pass Fano test in a magnetic field only with significant step size restrictions.

Larger step sizes are possible as energy increases or field strength decreases (curvature radius increases)

Considering the penalty in efficiency, a more accurate algorithm allowing larger step sizes is desirable.

Fano test: powerful tool for benchmarking radiation transport algorithms and testing the correctness of MC simulation parameters.

NRC·CNRC

Transport under magnetic fields with the EGSnrc simulation toolkit

Ernesto Mainegra-Hing, Frédéric Tessier, Blake Walters

Measurement Science and Standards, National Research Council Canada

Hugo Bouchard

Université de Montréal and National Physics Laboratory (UK)

