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Why be quantitative?

* Provides metrics to establish measurement
reproducibility
— Geometry
— Modality-specific biomarkers
— Diffusion
— Temperature

e Better disease detection and treatment
monitoring

* Ensure safety



The NIST MRI Team

« Steve Russek (project leader),
Michael Boss, Katy Keenan, Karl
Stupic, Brian Yunker

« John Moreland (group leader), Gary
Zabow, Josh Biller

« Two magnets used in unique ways




What are our goals?

* Facilitate development of novel, quantitative
MR techniques

e Establish traceable, ground truth reference
values for MR community

* Develop quantitative, biomimetic phantoms
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MR Basics

Magnetic Resonance
Imaging (MRI) is an
imaging technique that
detects hydrogen
atomsin your body

Based on Nuclear
Magnetic Resonance

(NMR) (( ))
Uses strong magnets

and radio wavesto
detect a signal

Magnetic field
gradients allow
localization of signal
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MR Basics: Signal Generation

* The hydrogen nucleusis like a
tiny bar magnet
— Thermal equilibrium: align
parallel or anti-parallel in a
magnetic field

— Slight preference for parallel
creates a net magnetization, M

 ApplyapulsedRF field at the
Larmor frequency

— In rotating frame, net
magnetization rotates

— Can be placed into a plane
transverse to the external field

W = ’\;‘B()

w : Larmor frequency

v : Gyromagnetic ratio

By : External magnetic field strength



MR Basics: Inductive Detection

* Magnetization rotates
at the Larmor
frequencyin the
transverse plane

* A changing magnetic
flux will induce a

voltage in a closed
loop conductor

* The voltage is
proportional to the
number of spins

So which spins come from where?



MR Basics: Signal Localization

 Larmor frequency scales
with external magnetic

field

* By applying magnetic
field gradients, the field
will vary linearly as a
function of position
along a given direction
(x, y orz)

— Larmorfrequencyis
position-dependent

— Signal intensityas a
function of frequency
tells where hydrogen ey oot b
nuclei (protons) are

Frequency Offset [Hz]

mgw 0
Position [um




MRI Basics: Contrast

* One obvious mechanism:
proton density

* MR signal does not last
forever

— Signal intensity decays
accordingto two time
constants, T;and T,

— Differencesin relaxation
times can be taken
advantage of to generate
contrastin images



MRI Basics: T, (longitudinal) Relaxation

Images from E.
Haacke et al.,
Magnetic
Resonance
Imaging:
Physical
Principles and
Design
Sequences

Normal Image T,-weighted Image
* Spinsreturn back to equilibriumin a characteristic time T,
* Short T, appear bright, long T, dark

* T, affects how fast data can be acquired: repetition time
(TR)



MRI Basics: T, (transverse) Relaxation

Images from E.
Haacke et al.,
Magnetic
Resonance
Imaging:
Physical
Principles and
Design
Sequences

Normal Image T,-weighted Image

e Spins dephase due to different Larmor frequencies
* Short T, appear dark, long T, bright



NIST/ISMRM System Phantom

* Worked with ISMRM Ad Hoc
Committee for Standards in
Quantitative Magnetic
Resonance

 Developed phantom for
basic MR parameter
qguantification
— Based on ADNI shell

— Materials chosen to match
physiological values

e Ground truth to be
established by NIST
— NIST MRI
— NISTNMR




System Phantom: Ground Truth
Measurements

 Measure ground truth at
appropriate field strengths
and temperatures
— 1.5and 3 tesla
— 10-37°C

* Use gold standard techniques Ni Concentration [mM]
— Inversion Recovery

o
<~

Relaxation Rate (s'1)

-
~

— Carr-Purcell-Meiboom-Gill

* Measurements must be
physically consistent




System Phantom: Field Testing

e Phantom sent out for round
robin testing

— 18 different scanners across US
— 3 vendors, 2 field strengths

e Standardized protocols used
— T;: Inversion Recovery vs. VFA
— T,: Spin Echoes

* Data analyzed at NIST using

custom software,
PhantomViewer




System Phantom: Data Analysis

Scanner, Method

e Vendor A; IR
Vendor B; IR

Vendor C; IR

Vendor A; VFA
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Approaches: NIST/NCI/RSNA QIBA
Diffusion Phantom

Diffusion-weighted MRI (DW1)
can reveal microscopic
structural information

Tumors/lesions often exhibit
different apparent diffusion
coefficient (ADC) than healthy
tissue
— Enables diagnosis and
treatment monitoring
Goal: Generate QIBA Profile for
DWI using ADC as quantitative
imaging biomarker
— Literature search for claim
justification
— Phantom for QC

Normal tissue

Often, tumors
are highly
cellular with
restricted
diffusion
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Effective

‘1’ Treated tumors
often show
apoptosis or
necrosis with
increase in
diffusion

Induced
Cell Death

Distribution

Thoeny HC and Ross BD, J. Magn. Reson.Imag., 32:2-16 (2010)



Diffusion Phantom: Background and
Inspiration

Table 1. Apparent diffusion coefficient values measured in normal liver at 1.5T

Mean ADC Standard Number of
Reference (10 2mm?s™")  deviation Range subjects  b-values (smm ?) Comments

Taouli et al [10] ) 0.13 1.44-188 10v 0, 500 Conventional
0.15 1.28-180 With parallel imaging
0.21 1.27-1.99 Diffusion tensor/
parallel imaging
Murtz et al [§1] 0.92-0.96° 0.09-0.14 0.62-1.20 12v 50, 300, 700, 1000, 1300 Pulse Triggered
1.03-1.14 0.22-0.40 0.67-2.57 Non-triggered
Kim et al [1§] 1.05/1.02° 0.30/0.25 6v/126p 3,57, 192, 408, 517, 850
1.55/1.16 0.37/0.42 3, 57, 192, 408, 192, 408
4.8/3.55 2.37/1.75 3,5
Ichikawa efal [13] 2.28 . 46 p 1.6, 55
0
0
0

Taouli et afj [14] 1.83 . 14-255 66p
1.51 . 1.12-2.71 ,

Kwee et alj§15] 1.60/1.62/1.57° §0.14/0.18/0.15 Mv , Breath-hold
2.13/2.27/2.07 §0.33/0.47/0.43 Respiratory triggered
1.65/1.62/1.65 § 0.09/0.16/0.17 Free breathing (7 mm slice)
1.64/1.66/1.57§ 0.13/0.11/0.19 Free breathing (5 mm slice)

Yamada et a§[16] 0.87 0.26 30, 300, 900,1100 ADC
0.76 0.27 Diffusion coefficient (DC)

Muller et al [1 1.39 0.16 8 b-values; b.y 328454

Namimato et al [\8] 0.69 0.31 30, 1200

This study 1.04 0.05 0.95-1.11 100, 200, 500, 750, 1000 Free breathing

ME-iviiquel, et al., Brit. J. Rad., 85:1507-1512 (2012)

’




Measuring diffusion with RF

* Basic concept (

)
— Each water molecule in é)
the body can serve as an
RF transmitter/receiver
— Tag hydrogen (proton)
spins with phase as a )
function of position é

— Let spins move around
— Reverse phase change

— Signal attenuation due to ;
imperfect refocusing

providesinformation
about motion




Diffusion is temperature dependent
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NIST/NCI/QIBA Isotropic Diffusion
Phantom

. g Goa|S
— Establish linearity of
ADC over relevant
physiologicalrange
— Characterize off-

isocenter effects (e.g.
gradient linearity)

. Approach

— Use non-toxic
polymerto tune ADC
of water molecules

— Spread diffusion
media over wide area

— Minimizethermal
effects by use of an
ice-water bath

Commercially available at High Precision Devices, Inc.
http://www.hpd-online.com/diffusion-phantom.php



Signal

Prototype Diffusion Phantom Round
ololly
CHA S O

* Prototype phantomssentto "’ LN
collaboratorsin US and EU

* Measuredon all majorvendors,
usinga standardized protocol
(b=0, 500, 900 s/mm?)

10 P~ &
0.8 e
0-6 K\\“%e\“‘
T ——
0.4 —_—
0.2
0 200 400 600 800 1000



Prototype Diffusion Phantom Round

Robin
e Assessed ADC in
each vial using Site A, bggg
different b-values Site B, b ConCePT
(2-point fit) Site B, baoo

Site C, bgqg
Site C, bgoo

e As ADC decreased,
coefficient of
variation increased
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Diffusion Phantom:
Prototype to Product

* Moved from 3D-printing
to injection molded
manufacturing
— More robust material

— Transparent shell allows ice
to be more easily seen

* Minor design changes
— Larger vials

— Susceptibility-matching
plugs to mitigate image
artifacts




Diffusion Phantom: New Round Robin

Phantom copiessentto a larger
number of sites:

Modified imaging protocol:

— 4 b-values: 0,500,900, 2000

— Interested in seeing effect of b,y
on CoV of high-PVP solutions (low

ADC)

Day 1: test-retest of all 4 b-
values across all 3 orientations
(done sequentially, 4 passes)
Day 2: repeatof Day 1

Data stored on Quantitative
Imaging Data Warehouse:

Automated software analysis
with QIBAPhan



Diffusion Phantom: Achieving Consistent
Analysis: QIBAPhan

= Readsin DW-MRI multi-
vendor multi b-value
classicDICOM images o
the phantom

= Qutputs scanseries

Authors: Tom Chenevert and Dariya Malyarenko catalogue with acquisition
protocol compliance check

= Displays DWIand derived

Project Goal: Automated derivation and analysis
of key system DWI performance metrics for
cross-vendor/site certification and quality control
utilizing phantom data

Figure 2
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Diffusion Phantom: Results

O Site A, VendorA, 3T

A Site C, VendorB, 3T
Site D, Vendor C, 3T
Site E, Vendor A, 3T

O SiteF,VendorB,3T
Site G, VendorB, 1.5 T
Site M, Vendor C, 3T
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Standardized image analysis
performed

Excellent repeatability
— CoV<1.7% for ADC>0.4 x 103
mm?2/s
— 3-3.4% for PVP-40(~0.24x10-3
mm?2/s)
— 7.5-11.0%for PVP-50
Interscanner reproducibility

— CoV<4.1% for ADC>0.4 x 103
mm?2/s
* <1% forinnermost water vials
— 5.6-6.8% for PVP-40(~0.24 x
103 mm?2/s)
— 5.4-19.7 % for PVP-50

Phantom in clinical trial
(TRACK-TBI)



Quantitative MRI measures:

Compare T, measurement
techniques

Compare diffusionimaging
methods

Measure tumor volumes _
b

.

Assess fat suppression Diffusion pa

n;cdm T1 relaxation phantom
-
Collaboration with Dr. Nola Hylton at .  .
University of California San Francisco -
(UCSF) for the ACRIN 6698/I-SPY 2 )

trial

Slide courtesy of Katy Keenan



Breast Phantom

Geometric array Fat suppression with T1 relaxation phantom

No Fat suppression Spectral Fat suppression

Diffusion oA - Heavy
) 4 JW ® - Mineral oil
components . i.* - .{'\OHYG
Fibroglandular and o ém" XX FE—i
i @Dy IF¥ [QD!
. | | 5 Signal from
silicone shell

fat Mimics
o
iS suppressed.

T, components

Universal fit in wide
range of breast coils

Development
through 2 rounds of
SBIR




T1 relaxation results

1600+
30T
Target*
= Target
o
£ 15T
S 800- () Fibroglandular mimic
¥ 30T
% 30T Fibroglandular mimic
= Adipose target
= 400- g 157 1.5T
}/Adipose target Adipose mimic
30T
Adipose mimic
0 100 200 300

T2 relaxation time (ms)

Target in vivo values from Rakow-Penneret al., JMRI 23(1):87-91, 2006



Future Directions: CENC “universal”

phantom

1 Fractionalanisotropy
2 _

4,

5.

Veterans Health 2' PrOton denSity
Administration = 3 Apparent Diffusion
Coefficient (ADC)
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Future Directions: CENC “universa
phantom

Additional
quantitative
biomarkers

Need better biomimetic
materials and structures

| Tm-DOTM|
Chemical shift translates to 24.3 ° .| — I nno AI

s - Develop novel techniques to
“¥ interrogate additional
physical parameters




Future Directions: Additional Phantom Efforts

T2* / Dynamic Susceptibility Contrast PET-MR phantom with NIST Gaithersburg
Phantom with RSNA-QIBA and UCSF
Challenge: determining attenuation from MR

for calculation of PET maps
- Skin
— Bone
Soft tissue 1
Soft tissue 2
Calibrated PET
source

Quantitative #* )

Imaging *® &
Biomarkers g rena
Alliance =*

University of California
San Francisco

CT-Ultrasound-MR-PET Multimodality Phantoms
Challenge: discover materials that mimic tissue and impact damage across modalities

Sample CT Ultrasound image MR image

image e -

Bryan Yunker, PhD

(NCR/RAP 2016) 3
UTE: TE1, TR45,FA 15

Industrial casting compound with water cavity



Conclusions

* Goals: To provide long-term monitoring of traceable
materials/objects that:

— Have ground truth
— Sanity check for existing MR techniques
— Expedite developmentof new imaging techniques

— Improve patient care through non-invasive, reproducible
measurement of physical parameters

* Explored several approaches
— Professional societies
— Roundrobins
— Academic collaborators
— SBIR, industrial partners

* Disseminating NIST work worldwide



Thanks for your time!




MR Thermometry

ADC values can be very
temperature dependent

Need a way to measure
temperaturein situ

Solution: thulium

chelates, such as Tm-
DOTA

Tm-DOTA

10 20 30

Temperature (Celsius)



Ultra-Low Field (ULF) MRI Phantom

B,, B,, B, compensation coils




Ultra-Low Field (ULF) MRI Phantom

 Atlow field strengths, higher
relaxivity -> greater contrast

* NIST ULF-MRI system

 QOur phantomfor ULF-MRI has
been tested in collaboration with
the John Clarke group at UC
Berkeley

— Low SNR at 132 uT makes scan

times very long compared to
clinical MRI

— System stability is an issue raised
by preliminary phantom data
— Phantom will be crucial in assessing

system performance both at
Berkeley and here in Boulder




ULF-MRI at UC Berkeley: T,
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ULF-NMR and MRI T,
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agreement
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ULF-MRI at UC Berkeley: resolution

-30 20 -10 0 10 20 30 20 -10 0 10 20 30
z (mm) z (mm)

3 T slice profiles (d) 128 uT slice profiles

Signal (arb)




