X-Ray Standards for Homeland Security

u**s ant**hracis

Larry Hudson April 27, 2015 0000

NIST involvement began with the anthrax bioterror attack via the US mail: 22 infected, 5 lethal

tasked by OSTP to develop and optimize standard sanitization process & protocols

"suspect" mail from Trenton and Brentwood

new "Govt" mail

The level of absorbed dose required for sanitization depends upon many factors, many ill defined: bioburden, kill curve, other pathogens, def. of sanitized (LD50?), immune suppressed, bricks & feathers, dispersal & intake, particle size, time, money, secondary rad effects...

physicists assume a spherical cow...

Sterigenics vertical electron beam for letter mail

in this case, a homogenous medium...

Bridgeport, NJ

10 MV rhodotron accelerator

Two-sided 10 MeV electron irradiation for letter mail

Task: tune product depth and irradiation parameters to achieve the most efficient & uniform dose distribution

Validation Strategy: design and irradiate test mail instrumented with dosimeters and biological indicators, guided by computational dosimetry

calculations verified by measurements

With >10000 IED incidents annually, and global expenditures for aviation and commercial security in the hundreds of billions of dollars, there is a pressing need to develop, apply, and harmonize standards for x-ray and gamma-ray screening systems used to detect explosives and other contraband.

Screening!

This project morphed into responsibility for national and international *measurement* standards for bulk explosives detection.

IMAGE QUALITY

·5.0 10

ANSI N42.45 Test Article for CT Security Screening Systems

National and International Standards for X-Ray Inspection Systems

A TRIFURCATION...

Standards for Checkpoint Screening

Designation: F 792 – 08 Standard Practice for Evaluating the Imaging Performance of Security X-Ray Systems

Objective Evaluation

Human

Perception

Quality Assurance

half empty...

...or half full?

IEC 62523-2010 Cargo-Vehicle image quality Materials Discrimination Test Objects

Varian IntellX-3 6 MV / 3.5 MV fixed-gantry screening system

Development of a national protocol for high-E cargo-inspection beams

- Ionization chamber to measure *AIR KERMA* from systems with peak voltages between 6 MV and 10 MeV
- Leakage currents stable $< 5 \times 10^{-15} \text{ A}$
- Operating voltage is optimized at 300 V
- Chamber response is linear with increasing x-ray fluence
- Charge-collection efficiencies are of the order of 99 %
- Monte Carlo calculations for estimating wall correction (about 8 %); etc.
- Testing at both NIST Clinac megavoltage x-ray source and ⁶⁰Co beams

...then, on 12/25/09, someone did what?!

• privacy

- dose & rates
- metrology
- effectiveness
 cost-benefit

X-RAY BACKSCATTER NOT TO BE CONFUSED WITH MM-WAVE BODYSCANNING

x-ray backscatter is used to screen

HOW DOES XRB WORK? start with a conventional x-ray tube

p.42, Annex 1 (typical operating parameters)

Scientific Committee on Emerging and Newly Identified Health Risks

SCENIHR

Health effects of security scanners for passenger screening (based on X-ray technology)

SCENIHR approved this opinion by written procedure on 26 April 2012

X-ray spectrum:	Tungsten target, 20° anode angle, filtration 1 mm Al equivalent, 50 kV potential
Focal spot size:	1 mm
Tube current:	5 mA
Geometry:	 Centre of inspection area 877 mm from focal spot beam size at 877 mm: 5.5 mm x 5.5 mm width of horizontal sweep: 1000 mm X-ray beam horizontal sweep: 5.45 ms field moving up 4.82 mm during each horizontal sweep each location (at one sweep) exposed approximately 35 µs total scan height: 2.3 m
Front coop followed by	v hadv een at eene eenditiene

Front scan followed by back scan at same conditions

Duration of each scan: 2.6 s

[radiographic exposure = 175 nA·s]

Components of a single-pose system

(1) master scanner; (2) slave scanner; (3) operator console; (4) front panel of the slave scanner; (5) floor mat; (6) wings of the slave scanner.

(vendor B)

the basic physics & imaging modalities

backscatter

forwardscatter

How does one measure a flying spot of x rays?

Volume 119 (2014) http://dx.doi.org/10.6028/jres.119.021 Journal of Research of the National Institute of Standards and Technology

The Metrology of a Rastered Spot of X Rays used in Security Screening

Lawrence T. Hudson, Jack L. Glover, and Ronaldo Minniti

National Institute of Standards and Technology, Gaithersburg, MD 20899

In recent times, ionizing radiation has been used around the world to screen persons for non-medical purposes, namely to detect bulk explosives or other contraband hidden on the body including materials not registered by metal detectors. In contrast to conventional transmission or projection imaging, backscatter and forward-scatter systems employ a "flying spot" of x rays and large-area detectors. A small spot is rastered across an individual and the Compton scatter signal collected by these detectors is quickly integrated and assigned to a pixel value in an image corresponding to the transient location of the small flying spot. These systems have been controversial due in part to possible radiation health risks, and lack of independent and accurate measurements of radiation exposures to the subjects, bystanders, and operators of such systems. In this paper we will outline the techniques and instrumentation used at the National Institute of Standards and Technology (NIST) to accurately determine the incident air kerma from a swept beam of x rays. We discuss in detail the response of a large-area free-air ionization chamber under the unusual temporal and spatial radiation fields delivered by commercial scanning systems and report typical values for air kerma levels as well as estimates of air kerma rates.

Key words: advanced imaging technology; air kerma; air kerma rate; backscatter; dosimetry; ionization chamber; rastered beam; security screening; swept beam; x rays.

Guidance for security screening of persons

Guidance	Standards	Reports
Radiation Safety for	ANSI/HPS N43.17 -	NCRP
Personnel Security	2009	Commentary 16
Screening Systems	IEC 62463 – 2010	

IEEE STANDARDS ASSOCIATION

ANSI N43.17 ØIEEE

- defines 'reference effective dose' E_{ref} (air kerma, HVL)
- requires E_{ref} < 250 nSv/screening, and recommends:
- large-volume (sensitivity) air-filled ionization chamber (IC)
- low-E spectra \rightarrow thin walls \rightarrow not pressurized \rightarrow T&P correction
- absolutely calibrated, fully illuminated, & traceable to national standard beam qualities (Z, kVp, filtration)
- when used with flying spot, IC operated in integrating (not rate) mode, painting entire volume

In this work, the following detectors were calibrated at NIST to air kerma:

Calibration / Traceability

(a) Radcal 10X5-1800, cylindrical IC

&

(b) RTI R100B solid-state detector, sensitive area 1 cm²

Also used:

- RTI CTDI100 CT Dose Profiler used for time structure investigation
- Imaging plates for high-resolution spatial mapping

...performed by chamber substitution, with standard beam qualities Ritz: tube potentials 20 keV to 100 keV

location, location, location...

Dose rate determined to be about 1.1 mGy/s...CT dose rate about 50 mGy/s

FROM GRAY TO SIEVERT

Ionizing radiation - SI dose unit relationships

Quantity	Absorbed dose	W _I		Equivalent dose	All parts uniformly Only s of body samples 7	of body irradiated 1 Wri Wri Wri Wri Wri Wri Wri Wri Wri Wri	Effective dose = overall effect
name or modifier	gray (Gy)	Radiation v Factor	weighting r - <i>W</i> R	sievert (Sv)	Tissue w facto	r - W _T	sievert (Sv)
Units	J/kg	Sv/Gy		J/kg	Sv/Gy		J/kg
Definition	The mean energy imparted by ionizing radiation to matter, divided by the mass of that matter.			Biological effect on an organ or tissue by radiation type R with weighting factor w_R . Multiple radiation types require calculation for each, which are then summed.			Biological effect on tissue type T having weighting factor w_T . Overall effect = summation of effective doses to parts If whole body irradiated uniformly, the weightings w_T sum to 1.
Detector			A (fr	verage air kerma ont + back scans	1) ²		
Ionization Chamber			64.2 nGy ± 2 nGy		, 1)	After t four m	two calibrations, separated nonths
Solid State Detector			65.6 nGy ± 2 nGy			At 1 m source	height, 30 cm from maste beam-emitting surface

Summary of effective (whole-body) dose estimates for "vendor B", adult 30 cm from master unit, two-sided exposure

- 12.6 nSv ANSI/HSP N43.17-2009 (reference effective dose)
- 14.2 nSv PCXMC 2.0
- 15.5 nSv ICRP voxel phantom & conversion coeffs & SRS-78 spectrum generator

HPS (modified)

ANSI N43.17 Reference Effective Dose limit per scan = 250 nSv

This material is based upon work supported by the Science and Technology Directorate of the U.S. Department of Homeland Security under Awards # HSHQPM-14-X-00023.

QUESTIONS