# Objective measures of image quality and F792-OE

Dr. Jack L. Glover

Theiss Research

National Institute of Standards and Technology (NIST)





# Checkpoint x-ray screening

 Image quality standard ASTM F792-08



- Currently under revision and may be split into 3
- One sub-working group is developing an Objectively Evaluated (OE) standard
- General trend toward objectively-evaluated image quality standards



# Measuring x-ray image quality



#### Objective standards

- Create a common language of image quality
- Easy comparison of specifications
- Objective standards are evaluated by an algorithm, rather than a human
- Recent trend towards objective standards
  - CT image quality standard (N42.45-2011)
  - Portable x-ray systems for bomb squads (ANSI N42.45-2013)
  - Checkpoint standard?(proposed ASTM F792-OE)





#### Objective vs subjective image quality



Subjective test (i.e. judged by a person)

#### Objective vs subjective image quality





Subjective test (i.e. judged by a person)

#### Objective vs subjective image quality



ASTM F792



ASTM F792-OE





Subjective test (i.e. judged by a person)

Objective test (i.e. judged by an algorithm)

#### CT screening of checked luggage

- Image quality standard: ANSI N42.45
- Objectively evaluated image quality metrics
- Has proved extremely useful for TSA/TSL and manufacturers





# ASTM F792-OE prototype







## Proposed F792-OE metrics



| Test name                                   | What is meant to be measured                                                  | Object on test pattern                               |  |
|---------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------|--|
| Test 1: Steel Penetration                   | thickest step that can be discerned from adjacent steps                       | stainless steel step wedge                           |  |
| <b>Test 2:</b> Organic Contrast Sensitivity | contrast between thin organic objects                                         | polyoxymethylene (POM),<br>e.g. Delrin™ step         |  |
| Test 3: Resolution                          | spatial resolution in the two lateral dimensions                              | lead foil                                            |  |
| Test 4: Dynamic Range                       | how much useful information<br>the system is capable of<br>storing in a pixel | stainless steel step wedge                           |  |
| Test 5: Noise                               | quantifies the frequency-<br>dependent noise                                  | with no test object present                          |  |
| Test 6: Useful Penetration                  | wire visibility through different thicknesses of steel                        | wires of different diameters behind steel step wedge |  |

#### Proposed F792-OE metrics



#### Spatial resolution

Extremely important aspect of image quality

Definition: the ability of a system to resolve, as separate, closely spaced small objects.

NOT the smallest object that can be seen

NOT wholly determined by number of pixels or pixel size



#### Spatial resolution in F792-OE



#### **Dynamic Range**

Widely used concept in signal processing

• Dynamic range = 
$$\frac{\text{Largest signal}}{\text{Smallest increment}}$$





#### Organic detection

BSNR = 6.7





S vals 0.031 0.036 0.025 0.031

#### Boundary Signal to Noise Ratio (BSNR)

Computed using multiple images in different orientations

$$S_i = 1 - \overline{thin step_i} / \overline{thick step_i}$$

$$BSNR = \frac{\overline{S}}{\sigma_{\rm S}}$$





#### Steel Penetration

- Uses a steel step wedge
- Measures BSNR at every boundary
- Boundary = visibleif, BSNR > 5
- What is the thickest step with both boundaries visible?



#### Useful penetration

- Ability of a system to image wires under blocking material
- Concept exists in humanjudged version of F792

- Objective evaluation
  - = a challenge







### Useful penetration



ASTM F792-OE algorithm





#### ASTM F792-OE results

- Suite of image quality metrics
- Performance monitoring
- Comparison of systems

| Image Quality Metric                    | Vendor A                                     | Vendor B                                             | Vendor C                                             |
|-----------------------------------------|----------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| Test 1: Steel penetration               | 24 mm                                        | 15 mm                                                | 18 mm                                                |
| Test 2: Organic<br>Contrast Sensitivity | 22.9                                         | 4.9                                                  | 2.8                                                  |
| Test 3: Spatial<br>Resolution           | x-axis.: 0.56 lp/mm<br>y-axis: 0.76 lp/mm    | x-axis: 0.41 lp/mm<br>y-axis: 0.53 lp/mm             | x-axis: 0.48 lp/mm<br>y-axis: 0.54 lp/mm             |
| Test 4: Dynamic Range                   | 229                                          | 72                                                   | 204                                                  |
| Test 5: Noise                           | x-axis: 468²<br>y-axis: 492²                 | x-axis: 474 <sup>2</sup><br>y-axis: 363 <sup>2</sup> | x-axis: 151 <sup>2</sup><br>y-axis: 178 <sup>2</sup> |
| Test 6: Useful penetration              | 20 AWG: 9 mm<br>24 AWG: 6 mm<br>30 AWG: 6 mm | 20 AWG: 6 mm<br>24 AWG: 3 mm<br>30 AWG: 0 mm         | 20 AWG: 3 mm<br>24 AWG: 0 mm<br>30 AWG: -            |



#### Conclusions

- There is a trend toward objectively evaluated image quality metrics
- Standard objective methods for measuring image quality make results more reliable and useful
- An objectively evaluated image quality standard has been developed by the ASTM F792-OE subworking group