Recent Advances in Brachytherapy Dose Calculation Methods – The Need for Standardization is Now More than Ever!

CIRMS Conference April 29, 2015

F. MOURTADA, PHD, DABR, FAAPM CHRISTIANA CARE, NEWARK, DE

ADJUNCT ASSOCIATE PROFESSOR MD CANCER CENTER, HOUSTON, TX & THOMAS JEFFERSON UNIVERSITY, PHILADELPHIA, PA

Disclosure

- Member of AAPM TG-186
- Member of AAPM Working Group -WGMBDCA

Learning Objectives

- Review of brachytherapy approaches.
- Describe the dosimetric uncertainty in modern brachytherapy.
- Review the AAPM TG-186 and WGMBDCA guidelines to commission modern dose calculation engines.
- Identify factors requiring standarization to achieve dosimetric consistency among clinics.

Acknowledgements

<u>TG-186</u>

- Luc Beaulieu, CHU de Quebec (Chair)
- Äsa Carlsson-Tedgren, Li University
- Jean-François Carrier, CHU de Montreal
- Steve Davis, McGill University
- Firas Mourtada, Christiana Care
- Mark Rivard, Tufts University
- Rowan Thomson, Carleton University
- Frank Verhaegen, Maastro Clinic
- Todd Wareing, Transpire inc
- Jeff Williamson, VCU

WG-MBDCA

Luc Beaulieu, CHU de Quebec (Chair) Frank-André Siebert, UKSH (Vice-chair) Facundo Ballaster, Valancia Asa Carlsson-Tedgren, Li University Annette Haworth, Peter MacCallum CC Goeffrey Ibbott, MD Anderson Firas Mourtada, Christiana Care Panagiotis Papagiannis, Athens Mark Rivard, Tufts University Ron Sloboda, Cross Cancer Institute Rowan Thomson, Carleton University Frank Verhaegen, Maastro Clinic

Common Past/Present Radionuclides in Brachytherapy (LDR/HDR)

Radionuclides	T _{1/2}	E _{avg} (KeV)	
²²⁶ Ra	1,622 y	830	
⁶⁰ Co	5.26 y	1,250	
¹³⁷ Cs	30 y	662	
¹⁹² lr	74.1 d	380	
¹⁹⁸ Au	2.7 d	410	
¹³¹ Cs	~10 d	29	Low E (<50 keV)
125	~60 d	28	+eBT
¹⁰³ Pd	~17 d	22	

F. Mourtada, Ph.D.

From Multiple Sources/Manual Loading to a Single Source/Afterloading

Ra-226 Tubes (manual) \rightarrow Cs-137 Tubes (manual) \rightarrow Cs-137 Pellet LDR (afterloading) \rightarrow Ir-192 PDR/HDR (afterloading)

HDR/PDR Remote Afterloader

F. Mourtada, Ph.D.

ICBT- Gynecology

Intracavitary: Places radioactive sources within a body cavity (cervical cancer)

LDR (temporary, 48hrs) or HDR (temporary, minutes)

Recently Introduced Applicators CT/MR (HDR/PDR Afterloader)

Utrecht Interstitial Fletcher

Fletcher Shielded

Interstitial Ring

Shielded ovoids

Interstitial Examples

- Interstitial
 - Permanent
 - GU prostate (I-125, Pd-103, Cs-131)
 - GYN pelvic side wall (Au-198)
 - GI rectum (Au-198)

CLINICAL APPLICATION TO APBI (ACCELERATED PARTIAL BREAST IRRADIATION)

Surface (Topical)

Places the radioactive sources on top of the area to be treated (choroidal melanoma)
Temporary: ~72hrs (LDR)

A custom-made radiation plaque. On the left is the inside of a plaque with the radiation seeds. On the right is the gold coating on the outside of the plaque.

Skin Surface Applicators Ir-192 HDR

Leipbzig (shielded)

Freiburg Flap

New BT Sources

• How sensitive is dosimetry for novel radionuclides and eBT to material heterogeneities (and general differences with TG-43)?

Slide from Rivard

Rivard, Venselaar, Beaulieu, Med Phys 36, 2136-2153 (2009)

New BT Sources

Luxton and Jozsef, Med Phys 26, 2531-2538 (1999)

Brachytherapy Dose Calculation (i.e. since 1995)

- TG43 formalism is the standard methodology for dose calculation.
- TG43 was created primarily for interstitial low energy brachytherapy purposes.
- Dose calculation is done assuming material is uniform water phantom.

- $D(r, \theta)$ dose rate to water in water at point P(r, θ)
 - S_K air kerma strength
 - A dose rate constant
- $g_{\rm L}(r)$ radial dose function
- $G_{L}(r,\theta)$ geometry function (line source approximation)
- $F(r,\theta)$ 2D anisotropy function

Rivard et al., Med. Phys. 31, 633-674 (2004)

 $D(r,\theta) = S_K \cdot \Lambda \cdot \frac{G_L(r,\theta)}{G_L(r_0,\theta_0)} \cdot g_L(r) \cdot F(r,\theta)$

History

• 1995 – TG43 (I-125, Pd-103)

 Provided recommendations for dose calculation for low energy source dosimetry (E<50keV).

• 2004 – TG43U1

- Clarifications, 1D vs 2D formalism, etc.

• 2007 – TG43U1S1

Increased number sources, etc.

• 2010 "Erratum" of TG43U1S1

Prior to TG-43: Sievert Integral Source Geometry

Consensus Data Sets

- Report gives recommendations on how to experimentally and theoretically obtain dosimetric parameters for sources.
 - Experimentally: detector type, volume averaging effects, phantom materials, energy response characterization, etc.
 - Theroetically (MC): Cut off thresholds, good practice guidelines (e.g. # of histories)
- Uncertainty analysis

Clinical Source Registry Available

- 3 current source registries available
 - IROC- Houston (RPC)
 - Carlton University (CAN)
 - ESTRO

High-Energy Brachytherapy Sources-examples

Figure 1. Schematic drawing of the Nucletron 'Classic' ¹⁹²Ir HDR brachytherapy source.

Low-Energy Brachytherapy Sources- examples

source: 27 keV

TG-43 Protocol Phantom Size Requirement

- TG43 has recommendations for "along and away" dose rate tables to distances far away from the source (e.g. 5cm for I-125)
- Requires phantom sizes in MC calculations to be large enough to give full scatter at large distances (10+ cm for HEB)

Radius of 40 cm recommended.

Advantages of TG43

- An analytic, uniform approach standardizes dose calculation worldwide.
- Simple to implement into the TPS and 2nd calculation spreadsheet for a clinical phyisicist

Limitations of TG43

- Assumes a water medium with superpositions of single source positions.
 - No inter-source attenuation effects
 - Full scatter conditions
 - Most low energy applications have full scatter e.g. prostate implants
 - No variable tissue composition
 - More of an issue for low energy sources than for high energy sources

Limitations of TG43, cont

- High energy brachytherapy sources suffer more from effects of the scatter conditions than low energy brachytherapy sources.
 - Applications can range from deep (gyn) to shallow (skin).
- Neglects applicator shielding effects for treatments such as shielded ovoids or cylinders.
 - Incorrect correlation of doses reported with toxicities

TG43 has served us well!

- Is still!
- Worldwide uniformity
- Well-define process for source parameters
- Source specific
- Fast
- Dose optimization (IP)

Report #229

Dose Calculation for Photon-Emitting Brachytherapy Sources with Average Energy Higher than 50 keV: Full Report of the AAPM and ESTRO

Report of the

High Energy Brachytherapy Source Dosimetry (HEBD) Working Group

August 2012

TG-229 Report Contains

- 1. Review the construction and available published dosimetry data for <u>high-energy</u> ¹⁹²Ir, ¹³⁷Cs, and ⁶⁰Co sources.
- 2. Perform a critical review of the existing TG-43U1 formalism applied to HEB.
- 3. Develop a complete consensus dataset to support clinical planning for each source model.
- 4. Develop guidelines on the use of computational and experimental dosimetry of high-energy brachytherapy sources.

TG43-based TPS can fail to accurately calculate dose

- Dose perturbations due to contrast medium and air pockets
- Effect of patient tissue inhomogeneities
- What is the impact on
 - PTV
 - Skin
 - Chest wall/ribs

air ≠ water? tissue ≠ water? contrast impact? source superposition? source shielding? radiation scatter?

Rivard, "Brachytherapy Dose Calculation Formalism Dataset Evaluation, and treatment planning system Implementation (AAPMSS 2009)

One size does not fit all!

Sensitivity of Anatomic Sites to Dosimetric Limitations of Current Planning Systems

anatomic site	photon energy	absorbed dose	attenuation	shielding	scattering	beta/kerma dose
prostate -	high					
	low	XXX	XXX	XXX	•	
breast -	high				XXX	
	low	XXX	XXX	XXX		
GYN -	high			XXX		
	low	XXX	XXX			
skin	high			XXX	XXX	
	low	XXX		XXX	XXX	
lung	high				XXX	XXX
	low	XXX	XXX		XXX	
penis -	high				XXX	
	low	XXX			XXX	
eye	high			XXX	XXX	XXX
	low	XXX	XXX	XXX	XXX	

Rivard, Venselaar, Beaulieu, Med Phys 36, 2136-2153 (2009)

Importance of the Physics: Water vs Tissues

Mass Energy-Absorption Coefficients Relative to Water as a function of Energy

Tissue composition impact is minimal (Ir-192)

Melhus C S, Rivard M J, « Approaches to calculating AAPM TG-43 brachytherapy dosimetry parameters for Cs-137, Ir-192, Pd-103, and Yb-169 sources », Med. Phys., 33(6), 2006

But-Effect of Phantom Size

Perez-Calatayud, Granero, Ballester MedPhys (2004)

Scattered Photon Contribution in Brachy

A. K. Carlsson and A. Ahnesjo, Med Phys 27(10), 2000
Physics « Rule of Thumb »

Energy Range	Effect		
1021			
13211	Scatter condition		
	Shielding (applicator)		
¹⁰³ Pd/ ¹²⁵ I/ eBx	Absorbed dose (μ_{en}/ρ)		
	Attenuation (μ/ρ)		
	Shielding (applicator, source)		

Alternatives to TG43

[&]quot;Thinking outside of the box is difficult for some people. Keep trying."

TABLE I. Status of MBDCAs that can account for radiation scatter conditions and/or material heterogeneities and were useable in brachytherapy treatment planning systems as of 12 May 2010.

MBDCA system	Sponsor(s)	Radiation type	Clinical use	FDA/CE mark status	Release date
PLAQUE SIMULATOR	Astrahan ^a	¹²⁵ I+ ¹⁰³ Pd photons	Y	N	1990
Collapsed cone	Ahnesjö, Russell, and Carlsson ^b	¹⁹² Ir photons	Ν	Ν	1996
BRACHYDOSE	Yegin, Taylor, and Rogers ^c	0.01-10 MeV photons	Ν	Ν	2004
МСРІ	Chibani and Williamson ^d	¹²⁵ I+ ¹⁰³ Pd photons	Ν	Ν	2005
GEANT4/DICOM-RT	Carrier et al. ^e	Any	Ν	Ν	2007
Scatter correction	Poon and Verhaegen ^f	¹⁹² Ir photons	Ν	Ν	2008
Hybrid TG-43:MC	Price and Mourtada ^g and Rivard et al. ^h	Any	Y	Y	2009
ACUROS	Transpire/Varian ⁱ	¹⁹² Ir photons	Y	Y	2009

Rivard, Beaulieu and Mourtada, Vision 20/20, Med Phys 2010

Brachytherapy Dose Calculation Methods

Rivard, Beaulieu and Mourtada, Vision 20/20, Med Phys 2010

BT Dose Calc.

Current STD: Implicit particle Gold STD for source Full scatter transport: characterization and Heteregoneities. water medium other applications Accurate to 1st scatter. GPU friendly PSS CCC GBBS TG43 MC No particle transport. No Solves numerically heterogeneity, shields. Primary can be used in transport equtations. Full more complex dose heteregoneities. engine

Grid-Based Boltzmann Solver (GBBS)

 $\hat{\mathbb{W}} \cdot \vec{\nabla} \mathbb{Y}(\vec{r}, E, \hat{\mathbb{W}}) + S_t(\vec{r}, E) \mathbb{Y}(\vec{r}, E, \hat{\mathbb{W}}) = Q^{scat}(\vec{r}, E, \hat{\mathbb{W}}) + Q^{ex}(\vec{r}, E, \hat{\mathbb{W}})$

– Position: $\vec{r} = (x, y, z)$

Direction: $\hat{W} = (q, f)$

Energy: E

mesh position discretization(finite elements)*Energy bins (cross section)*Angular discretization

« multi-group discrete ordinates grid-based ...»

2D: Daskalov et al (2002), Med Phys 29, p.113-124 3D: Gifford et al (2006), Phys Med Biol vol 53, p 2253-2265

GBBS Benchmarks for ¹³⁷Cs Pellets

F. Mourtada, T. Wareing, J. Horton, J. McGhee, D. Barnett, K. Gifford, G. Failla, R. Mohan, 'A Deterministic Dose Calculation Method Applied to the Dosimetry of Shielded Intracavitary Brachytherapy Applicators', *AAPM*, Pittsburgh, PA, 2004.

Attila (blue), MCNPX (pink)

AAPM Annual Meeting Pittsburg, PA, 2004

ACUROS benchmark

Dosimetric accuracy of a deterministic radiation transport based ¹⁹²Ir brachytherapy treatment planning system. Part III. Comparison to Monte Carlo simulation in voxelized anatomical computational models

K. Zourari,^{a)} E. Pantelis, and A. Moutsatsos

Medical Physics Laboratory, Medical School, University of Athens, 75 Mikras Asias, 115 27 Athens, Greece

L. Sakelliou

Department of Physics, Nuclear and Particle Physics Section, University of Athens, Ilisia, 157 71 Athens, Greece

E. Georgiou, P. Karaiskos, and P. Papagiannis^{b)}

Medical Physics Laboratory, Medical School, University of Athens, 75 Mikras Asias, 115 27 Athens, Greece

(Received 26 July 2012; revised 15 November 2012; accepted for publication 16 November 2012; published 18 December 2012)

FIG. 2. (a) The central image of the voxelized mathematical broast model with BV-TG43, BV-ACUROS, and MC dose calculation results for the same breast brachytherapy plan presented in the form of percentage isodose lines within the extent of the dose calculation grid. (b) A colormap representation of the spatial distribution of percentage differences between BV-TG43 and MC results $\left(\frac{D_{BV-TG43}}{D_{BC}}-1\right)$ on the plane presented in (a). (c) A colormap representation of the spatial distribution of percentage differences between BV-Acuros and MC results $\left(\frac{D_{BV-TG43}}{D_{BC}}-1\right)$ on the plane presented in (a). (d) Cumulative DVH results for the PTV derived from the 3D dose distributions calculated using BV-TG43, BV-ACUROS and MC. (e) Same as (d) for the skin and lung OARs.

MBDCA Calculation Speed...

- Can be relatively fast
 - Can be done within a few minutes
 - o < 1 sec per dwell-position (MC on GPU)</pre>
- BUT, MC (CPU-based), CC and AcurosBV[®] are all too slow to be coupled to IP for dose optimization

• See D'Amours et al IJROBP 2011; Hossoiny et al, Med Phys 2012

CURRENT ISSUES/RESEARCH AREA

Factor-based vs Model-based

From Asa Carlsson-Tedgren

TG-186 Report

Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: Current status and recommendations for clinical implementation

- 1. Recommendations to MBDCA early-adopters to evaluate:
 - phantom size effect
 - inter-seed attenuation
 - material heterogeneities within the body
 - interface and shielded applicators
- 2. Commissioning process to maintain inter-institutional consistency
- 3. Patient-related input data
- 4. Research is needed on:
 - tissue composition standards
 - segmentation methods
 - CT artifact removal

Approved by

ESTRO (EIR, ACROP) AAPM (BTSC, TPC) ABS (Phys Cmte, BoD) ABG (Australia)

Beaulieu et al, *Med Phys* 39, 6209-6236 (2012)

Three main areas identified as critical

- 1. Definition of the scoring medium
- 2. Cross section assignments (segmentation)
- 3. Specific commissioning process

Heterogeneity effects: low energies

Ignored in TG-43 D _{w,w} formalism	Approx. magnitude of effect (D _{m,m}) for prostate ¹²⁵ I or ¹⁰³ Pd treatments
Tissues	~10%+
Non-water 'objects'	Calcifications ~ 8% Applicator shielding ~ 50%
Photon attenuation by seeds	~15% local 2-4% global

Thomadsen et al, Med Phys 35 (2008).

Heterogeneity effects: higher energies (¹⁹²Ir)

- Differences between $\mathsf{D}_{w\!,w}$ and $\mathsf{D}_{m\!,m}$ for soft tissues generally <2%
- Esophageal ¹⁹²Ir HDR¹:
 - $D_{w,w}$ 13-15% lower than $D_{m,m}$ for spinal chord, sternum bone
- Breast ¹⁹²Ir HDR²:
 - $D_{w,w}$ is 5% higher than $D_{m,m}$ for skin; 10% higher for lung

¹Lymperpolou et al, Med Phys **33** (2006). ²Poon & Verhaegen *et al*, Med Phys **36** (2009).

D_{m,m} versus D_{w,m} brachytherapy comparison

- MBDCA compute D_{m,m}
- Large cavity theory: $D_{w,m} = (\mu_{en}/\rho)^w_m D_{m,m}$
- Differences between $D_{w\!,m}$ and $D_{m\!,m}$ given by $(\mu_{en}/\rho)^w{}_m$ values
- Differences between D_{w,m} and D_{m,m} are most significant below 50 keV: as high as 70-80% for soft tissues and factor of 7 for bone!

Importance of the Physics: Water vs Tissues

Difference in reporting dose to water or medium

- Left: Radial *D_{w,m}* and *D_{m,m}* in adipose mean-Z Three different brachytherapy photon sources: ¹⁰³Pd, ¹²⁵I, Axxent
- Right: Ratio $D_{w,m}/D_{m,m}$ differences up to 70%, highly dependent on source

Summary & Recommendations

- D_{m,m}, D_{w,m} and D_{w,w}(TG43) differ considerably, particularly for low energy brachytherapy:
 - Adoption of MBDCA: potential for significant impact on dose metrics
 - Cannot generally motivate reporting D_{w,m} to connect with previous clinical experience

<u>TG186 recommendation is to report</u> <u>D_{m,m} along with current TG43 D_{w,w}</u>

2- Cross section assignments (segmentation)

- MDBCA requires assignment of interaction cross section on a voxel-by-voxel basis
- In EBRT one only needs electron densities ρ_e (e⁻/cm³) from CT scan
- In BT (energy range 10-400 keV) the interaction probabilities depend not only on ρ_e but also strongly on atomic number Z

2- Cross section assignments

- Accurate tissue segmentation, sources and applicators needed: identification (ρ_e , Z_{eff})
 - e.g. in breast: adipose and glandular tissue have significantly different (ρ_e , Z_{eff}); dose will be different
- If this step is not accurate → incorrect dose
 - Influences dosimetry and dose outcome studies
 - Influences dose to organs at risk

Better ways to distinguish tissues: dual-energy CT?

- Use dual energy CT to extract ρ_{e} and Z directly from CT images

FIG. 1. Technical realization of a DSCT system (SOMATOM Definition, Siemens Healthcare, Forchheim, Germany). One detector (A) covers the entire scan field of view with a diameter of 50 cm, while the other detector (B) is restricted to a smaller, central field of view.

2- Cross section assignments

- Requirements from vendors
 - Accurate geometry (information accessible to users for commissioning)
 - Responsible for providing accurate composition of seeds, applicators and shields.
 - To provide a way for the manufacturers (of the above) or alternatively the end users to input such information into the TPS

Summary & Recommendations

- Low energy brachytherapy dose calcs very sensitive to tissue composition
 - Recommendations on tissue composition/assignment
 - Recommendations on tissue segmentation
- D_{m,m} and D_{w,m} are very different
 - Recommendations on dose perscription
- Recommendations on further research on tissue typing, imaging modalities (DECT), ...

3- Specific commissioning process

- MBDCA specific tasks
 - Currently, only careful comparison to Monte Carlo with or w/o experimental measurements can fully test the advanced features of these codes
 - This is not sustainable for the clinical physicists

TABLE OF CONTENTS

Ι	INTRODUCTION
	I.A Problem description
	I.B Report overview and rationale
	I.C Review of tissue and applicator material
	heterogeneity effects 6211
	I.C.1 Low energy regime, seeds, and
	miniature
	x-ray sources
	I.C.2 Intermediate energies: ¹⁶⁹ Yb 6212
	I.C.3 Higher energies: ¹⁹² Ir 6213
	I.C.4 Cone beam computed tomography 6213
Π	REVIEW OF MODEL-BASED
	BRACHYTHERAPY DOSE-CALCULATION
	ALGORITHMS 6213
	II.A Semiempirical approaches 6213
	II.B Model-based algorithms 6214
	II.B.1 Collapsed-cone
	superposition/convolution method 6214
	II.B.2 Deterministic solutions to the
	linear Boltzmann transport
	equation
	II.B.3 Monte Carlo simulations 6214
III	DOSE SPECIFICATION MEDIUM SELECTION 6214
	III.A Relationship between $D_{m,m}$ and $D_{w,m}$ in the
	large cavity regime 6216
	III.B $D_{m,m}$ and $D_{w,m}$ relationships in the small
	and intermediate cavity regimes 6216
	III.C Recommendations 6217
	III.D Areas of research
IV	CT IMAGING AND PATIENT MODELING 6218
	IV.A Literature review
	IV.A.1 Material characterization
	IV.A.2 CT segmentation 6220

IV.A.3 CBCT segmentation 6220	
IV.A.4 Dual energy CT and spectral CT 6220	
IV.A.5 CT artifacts 6221	
IV.A.6 Other imaging modalities 6221	
IV.B Recommendations	
IV.B.1 Consensus material definition 6221	
IV.B.1.a Prostate	
IV.B.1.b Breast	
IV.B.1.c Calcifications 6222	
IV.B.1.d Other materials 6222	
IV.B.1.e Applicators, sources, and	
other devices 6222	
IV.B.2 Material assignment method 6223	
IV.B.2.a Use of other imaging	
modalities 6224	
IV.B.3 CT/CBCT artifact removal 6224	
IV.C Areas of research 6224	
IV.C.1 Determination of tissue	
composition 6224	
IV.C.2 Segmentation methods 6224	
IV.C.3 CT artifact removal 6224	
V MBDCA COMMISSIONING 6225	
V.A Literature review 6225	
V.B From TG-43 to MBDCA-based	
commissioning 6225	
V.B.1 MBDCA commissioning level 1 6225	
V.B.2 MBDCA commissioning level 2 6225	<
V.B.3 MBDCA commissioning workflow 6226	
V.B.3.a Test case plans and data	
availability 6226	
V.B.3.b DICOM test case	
importing 6227	
V.B.3.c TG-43-based dose	
calculation tests 6227	

MBDCA-WG Commission for Shielded Applicators *Preliminary Results*

Conclusions

- With the recent introduction of heterogeneity correction algorithms for brachytherapy, the Medical Physics community is <u>still unclear</u> on how to commission and implement these into clinical practice.
- Recently-published AAPM TG-186 report discusses important issues for clinical implementation of these algorithms.

Conclusions

- AAPM-ESTRO-ABG Working Group on MBDCA in Brachytherapy (WGMBDCA) is
 - Creating a set of well-defined test case plans, available as references in the software commissioning process to be performed by clinical end-users.
- Need for *standardization* of such tasks is now needed for brachytherapy treatment planning transition from TG43 formalism to MBDCA.

Thank You

THE UNIVERSITY OF TEXAS MDAnderson Cancer Center

