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Outline

e Introduction to single event upsets- an example for the need for
ultra-low alpha-particle emissivity materials

e Sources of alpha particles in materials used in semiconductors

e Level of detection vs counting time as a function of counter
background

e | arge-area alpha particle detectors in use

e Effect of radon, cosmic rays, and static electricity
e Results from several round robin studies

e The need for an industry-wide standard

e Summary
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Single Event Upsets

e Single Event Upsets

—Errors in computer chips (memory & logic) that don’t cause
permanent damage

—Created by passage of energetic ionizing radiation through the
sensitive volume of chips

—This is a major reliability problem in servers, laptops, smart phones,
pacemakers, ipads, drones, autonomous vehicles...

e Sources of single event upsets:

—Alpha particles from natural radiation in chip packaging (ceramic,
underfill, interconnects, wafers, etc)
e current specification is ¢ < 2 a/khr-cm?
e that's 1.4 o/hr on a 300 mm diameter wafer

—Cosmic rays which create highly ionizing particles when they interact
w/ silicon (spallation)

—Thermal (slow) neutrons from 1°B(n,«) nuclear reaction
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Soft Errors in the News (Sun Microsystems)
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SAN MATEO, Calif. — Networking equipment is growing
increasingly susceptible to soft errors — nonrecoverable, temporary
misfires that can play havoc with things like traffic destinations —
as chip and systems designers pile on SRAM to boost
performance. To keep the problem at bay, memory experts are
urging designers to beef up their error correction and system
reliability mechanisms.

The electronics industry has devised defenses against soft errors,
but many say they expect the rate to worsen as memory makers
continue to shrink line widths and scale down voltage. And SRAM
makers could exacerbate the problem by packing more bits on a

Sun Microsystems leamed the hard way several years ago, said
David Yen, vice president and general manager of Sun's processor
group and former head of its integrated-products group. Sun at
times found itself at odds with server customers over problems that
it only later learmned were attributable to soft errors. "As a vendor we
couldn't tell the customer the reason [initially] and everyone would
get upset," he said. "It's been a lesson to us all. We have to look at
components from the perspective that they're not 100 percent
reliable "

Server makers have since made strong error correction part of their
designs from the outset. But networking OEMSs are just starting to
notice the effects of soft errors, observers said. "The awareness
has not been very great,” said Micron Technology's Pawlowski. "l
do technical seminars all over the planet and everywhere | go |
always bring up SER."

Soft errors occur when charged particles penetrate a memory cell
and cross a junction, creating an aberrant charge that changes the

state of the bit. Among the most common sources of soft errors are
alpha particles emitted by contaminants in memory chip packages
or cosmic rays penetrating the earth's atmosphere.
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Range and dE/dX for alpha particles in materials
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Sources of alpha particles in semiconductor packaging
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Failure rate caused by neutrons and alpha particles

Commercial 130 nm, 65 nm and 40 nm SRAM devices

The a-particle component is a substantial fraction of total SRAM error rate
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Alpha emissivity, contamination from U, Th on a Silicon Wafer
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Level of Detection vs Counting Time:

counting time (hr)

where:
B LOD = level of detection
tﬁ tiz n=1.64 for 90% confidence
LOD=no=n* GA* ° G, B, sample and background counts
¢ A=sample area
g=counter efficiency
10 300 mm diameter wafer
.._\ —F—FF Bkg
T S ()
% 1 NN N S—
~ B SEsilia=e
% =S ignsth Q“j: i s
: N TN
I SN P HTTTIN
0.1 1 “\L B
0 14 100 oy 100

There is a clear benefit to:
-large-area samples
-low counter background

-large counter efficiency

Gordon, et. al., 4th Annual IEEE Santa
Clara Valley Soft Error Rate (SER)
Workshop, San Jose, Ca. October 25,
2012.
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Some large-area alpha-particle detectors in use

Proportional counter

Alpha Sciences

I anode CER A E R XL XN 1 LN ]

| cathode

sample

Pros

Cons

-Large amplitude signal

-Relatively inexpensive
-Simple to operate
-Multiple wafers

-Not sensitive to static charge

-Counter needs to be constructed of
ultra-low emissive materials

-AE counter (no energy into)
-Alphas must pass through window
-High background (> 2 a/khr-cm?)

-Sensitive to EMI noise, vibration

lonization counter

XIALLC
anode guard
ceiling side
wall
— \
mid air sample
cathode

-Active signal discrimination
(rise time, amplitude and veto)

-Very low background
(~0.3 alkhr-cm?)

-Energy information

-Insensitive to noise, vibration

-Small amplitude signal

-Somewhat expensive

-Single wafer

-Sensitive to static charge on sample
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Operating principles of the XIA ionization detector

= Sample sits on cathode, 300 mm ¢ or 1800 cm2 operating mode

= Counter is filled with Argon (boil-off) from dewar

» Each signal induced on anode is digitized and fit
for amplitude and rise time

= Ceiling events have small amplitude and rise time
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Selected examples, uncontrolled material, vs ULA
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Radon daughters plate out on samples exposed to air

From 238U decay chain
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Examples of effects of radon adsorption
Sample stored in dry N,
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The effect of static electricity on insulating samples

Electrical insulators can charge to several kV which can distort the electric field in an
ionization counter

The effect can be eliminated by discharging the samples of shielding their influence

An example of the emissivity vs time for a charged 300 mm diameter glass wafer is shown
below
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Radon, Cosmic Rays and Static Electricity

« Radon adsorbed on samples can take several days to die off before the true
emissivity of the sample can be measured

This can be mitigated by sealing samples in air tight enclosures
« Cosmic rays (neutrons) add to the counter background

Ar (n,a) and Si (n,a) reactions in gas above sample and wafers
This leads to an “altitude effect” (background larger at higher elevations)

(n,p) computed for reactions on plastic, gas and wafers (source
of round event)

» Static Electricity on insulating samples can distort the electric field in ionization
detectors, which can reduce the measured alpha emissivity

This can be mitigated by discharging sample or shielding its influence
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Alpha Measurements, select results of round robin studies

Two round robins- similar results All participants used new XIA counters
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Il

Demographics of attendees of 15t six Cisco SER workshop
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Requirements for an industry-wide standard

e Lab to lab variability (in the first consortium, rounds | & Il) is larger
than the current alpha-particle specification

< JEDEC 221 standard
—Describes best practices for accurate low level measurements
—Lacks standard for inter- or intra-lab comparison

e Source requirements
— Thick source (to mimic most samples), 1MeV < Ea< 8.8 MeV
— Emissivity ~2 a/khr-cm? up to ~20 a/khr-cm?
— Stable emission with respect to time, energy
— Robust for shipping/ handling
— Material should be difficult to contaminate
— Emissivity should be uniform within — 1 cm? area
— ldeally we would have several “identical’ standards available
— Minimize contamination by radon
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Summary

e Alpha particle are a major contributor to soft error rates in
CMOS devices

—The semiconductor industry is using materials at the ULA
(<2a/khr-cm?) level, with lower levels in the foreseeable future

—A new class of detectors is capable of making these measurements
reliably

—Radon, cosmic rays and static on the surface of insulating samples
can affect the measurement results

» Radon: high results die off in a few hours to few days
e Cosmic rays: higher constant background
e Static: glass samples (+ charge) show lower results initially

—The industry needs a NIST-traceable ULA standard to confirm

proper detector operation at these ultra-low levels
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