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 Delivery of low energy radiation at high dose rates

 Three sources currently being marketed
 Elekta Esteya®1

▪ Developed for the treatment of skin lesions
 Zeiss INTRABEAM2

▪ Developed for intraoperative radiotherapy
 Xoft Axxent® source3

4openi.nlm.nih.gov/detailedresult.php

1. Elekta, Stockholm, Sweden
2. Carl Zeiss Surgical, Oberkocken, Germany
3. Xoft Inc., a subsidiary of iCAD, San Jose, CA

http://www.esteya.com/
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Bare source spectrum, PENELOPE

 Operated at 50 kVp and 300 μA 

 Produces a lightly-filtered 
bremsstrahlung spectrum
 Mean energy of the bare source 

is 26.6 keV at 50 kVp

 FDA approval:
 Breast, vaginal cuff, skin, cervix 

 Titanium cervical applicator
 Introduces a significant 

heterogeneity effect 
 Hardens the bremsstrahlung 

spectrum 
 Modifies the dose distribution
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1. NIST traceability
 Establishment of an air-kerma rate standard
 Standard was transferred to the UWADCL

2. Applicator introduces heterogeneity
 Modified TG-43 dosimetry formalism

3. Impact of applicator-to-applicator variations on the 
dosimetry parameters due to manufacturing 
tolerances
 Measurements with multiple applicators to develop representative 

dataset

4. Dosimetry dependence on applicator geometry
 Development of multiple dosimetry datasets 
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 Measurements performed:
 Before and after TLD 

measurements 

 Method the UWADCL uses for 
transferring the NIST standard 
to clinical well chambers

 Insert designed at UWMRRC 
to accommodate Xoft Source2
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 Captain’s wheel:
 Dose-rate conversion coefficient
 Radial dose function
 Azimuthal anisotropy

 Liquid water medium:
 Avoids water-mimicking plastics
 Avoids uncertainties associated 

with converting from dose-to-
solid phantom to dose-to-liquid 
water1

 Only water is between source 
and TLDs

161. Hill et al., “The water equivalence of solid phantoms for low energy photon sources,” Med. Phys. 37, 4355-4363 (2010).

This image cannot currently be displayed.



Stainless steel collimator
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Ti applicator

Collimator lip

Stainless 
steel top

Stainless         
steel bottom

Slit – 0.001” 
Kapton sheet

Visual editor rendering



ሶܦ ,ݎ ߠ ൌ
ܴ · ܰ ·

݇௕௤ ஺௫௫௘௡௧
݇௕௤ ଺଴಴೚

ܥ ݎ · ݐ

 ܴ TLD reading in nC corrected for individual chip 
factors and background

 ܰ Calibration curve conversion from nC to cGy


௞್೜ ಲೣೣ೐೙೟

௞್೜ లబ಴೚
Intrinsic energy dependence correction factor

 ܥ ݎ Phantom correction factor

 ݐ Total irradiation time

18

 TLD-100 LiF:Mg,Ti microcubes:

 Sorted to a reproducibility of 2%

 Handled according to the Cameron process

 Analysis:
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 Version 5 of the Monte Carlo N-Particle code 
(MCNP5) was used to1:
 Perform a computational dosimetric characterization
 Determine measurement correction factors

 The source and applicator were modeled using 
material and dimension specifications provided by 
Xoft Inc.
 Davis developed and verified the original bare 

source model2

 χ்௜, ்݃௜ ,ݎ ߠ , and ்ܨ௜ ,ݎ ߠ :	collision-kerma tally (F6)
 ܥ ݎ : energy deposition tally (*F8)
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 Dwell-position-dependent polar anisotropy

 Cervical applicator does not have 
a uniform thickness of titanium
 Rounded dome is ~0.5 mm thick
 Barrel ~0.4 mm thick
 Anode geometry
 Changing air gap distance

 Position of the source will impact 
the dose distribution surrounding 
the applicator

 Simulations: 0, 6, 12 mm pullback
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DRCC results Analysis

 3 applicators and 1 source

 Is one representative DRCC 
value acceptable for all 
applicators?

 1-Way ANOVA analysis

 There is no statistically 
significant difference between 
the applicators
 Azimuthal anisotropy
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distance / cm
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distance /cm MC bare source MC 6 mm % diff
1 1.000 1.000 0.00
2 0.634 0.886 -28.4
3 0.463 0.770 -39.9
4 0.356 0.661 -46.1



25

distance / cm

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

ra
di

al
 d

os
e 

va
lu

es

0.6

0.7

0.8

0.9

1.0

1.1

MCNP5
applicator 4_r1
applicator 4_r2
applicator 3
applicator 2

Overall 
Average RDF MCNP % difference

1 1.000 1.000 0.00
2 0.907 0.886 2.40
3 0.798 0.780 3.73
4 0.700 0.661 5.94

distance / cm min. value max. value max % 
difference

1 1.000 1.000 0.00
2 0.902 0.911 -0.96
3 0.779 0.812 -4.11
4 0.686 0.720 -4.62

 MCNP5 vs. TLD

 Applicator comparison

 Uncertainty budget is being 
developed

 Expected uncertainty ~ 5% (k=1)
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 NIST has established an air-kerma rate standard for the Xoft 
Axxent® source
 Need for NIST traceability for other electronic brachytherapy sources

 Established a modified TG-43 dosimetry formalism 
 Implementation by Xoft (an iCAD company) is ongoing
 Applied to other electronic brachytherapy sources

 A representative TG-43 dosimetry dataset is appropriate

 Multiple datasets can be utilized to accommodate the geometry of 
the applicator 
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 Repeat Captain’s wheel measurements with multiple sources

 Polar anisotropy measurements 
 TLD and film

 Azimuthal anisotropy measurements 
 Contribution from source vs. applicator positioning

 Attix Free Air Chamber measurements

29



 Larry DeWerd, PhD
 Wesley Culberson, PhD
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Polar Plot - normalized to minimum
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MCNP simulation results
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 Introduction
 Xoft source, cervical applicator
 State challenges

▪ NIST traceable
▪ New formalism
▪ Account for applicator (show MCNP and what happens if we don’t account for applicator)
▪ Dwell position dependent polar anisotropy
▪ Applicator-to-applicator variation

 Approach
 MCNP
 Attix FAC
 Well chamber – NIST-traceable wc cal coefficient
 TLD-100 microcubes
 Anode output profiles

 Conclusions 
 Future work

 Additional source measurements
 Attix FAC measurements
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 AAPM’s TG-431 dosimetry protocol
 Homogeneous patient geometry
 Ignores the presence of any applicators
 Calculated dose overestimates the actual dose received by the patient

 Need to quantify the effect of the applicator

 Need to develop a representative set of parameters that accounts 
for the presence of the applicator
 Applicator-to-applicator variation

 Applicator geometry introduces dwell-position-dependent polar 
anisotropy
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 AAPM’s TG-431 dosimetry protocol
 Homogeneous patient geometry
 Ignores the presence of any applicators
 Calculated dose overestimates the actual dose received by the patient

 Patient impact
 Under dosing of the patient 
 Inaccurate calculations of dose to OAR

 Need to quantify the effect of the applicator

 Need to develop a representative set of parameters that accounts 
for the presence of the applicator
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 Primary air kerma measurement 
comparable to NIST
 Measure up to 50 kV x-rays

 Measured air-kerma rate of the source 
at 50 cm
 Azimuthal anisotropy accounted for by 

measuring at each of the cardinal angles

 Standard Imaging1 SuperMAXTM

electrometer was used to measure the 
charge and current


