Addressing the Challenges of Using a Titanium Applicator with a Low-Energy Brachytherapy Source

Samantha J. Simiele, M.S.

University of Wisconsin Medical Radiation Research Center

23rd Annual Meeting of the Council on Ionizing Radiation Measurements and Standards Gaithersburg, MD April 27-29, 2015

- Introduction
- Methods
- Results
- Conclusions
- Future work

- Introduction
 - Electronic brachytherapy sources
 - Xoft Axxent[®] source
 - Challenges
- Methods
 - Formalism
 - Measurements
 - Monte Carlo simulations
- Results
 - Dose-rate conversion coefficient
 - Azimuthal anisotropy
 - Radial dose function
 - Polar anisotropy
- Conclusions
- Future work

- Introduction
- Methods
- Results
- Conclusions
- Future work

- Introduction
 - Electronic brachytherapy sources
 - Xoft Axxent[®] source
 - Challenges
- Methods
- Results
- Conclusions
- Future work

- Methods
- Results
- Conclusions
- Future work

- Delivery of low energy radiation at high dose rates
- Three sources currently being marketed
 - Elekta Esteya^{®1}
 - Developed for the treatment of skin lesions
 - Zeiss INTRABEAM²
 - Developed for intraoperative radiotherapy
 - Xoft Axxent[®] source³

http://www.esteya.com/

http://radonc.ucla.edu/site.cfm?id=458

1. Elekta, Stockholm, Sweden

- 2. Carl Zeiss Surgical, Oberkocken, Germany
- 3. Xoft Inc., a subsidiary of iCAD, San Jose, CA

Xoft Axxent[®] x-ray source¹

- Methods
 - Results
 - Conclusions
- Future work

- Operated at 50 kVp and 300 µA
- Produces a lightly-filtered bremsstrahlung spectrum
 - Mean energy of the bare source is 26.6 keV at 50 kVp
- FDA approval:
 - Breast, vaginal cuff, skin, cervix
- Titanium cervical applicator
 - Introduces a significant heterogeneity effect
 - Hardens the bremsstrahlung spectrum
 - Modifies the dose distribution

Xoft source outside of cooling catheter

- Methods
- Results
- Conclusions
- Future work

- 1. NIST traceability
 - Establishment of an air-kerma rate standard
 - Standard was transferred to the UWADCL
- 2. Applicator introduces heterogeneity
 - Modified TG-43 dosimetry formalism
- 3. Impact of applicator-to-applicator variations on the dosimetry parameters due to manufacturing tolerances
 - Measurements with multiple applicators to develop representative dataset
- 4. Dosimetry dependence on applicator geometry
 - Development of multiple dosimetry datasets

- Introduction
- Methods
- Results
- Conclusions
- Future work

- Introduction
- Methods
 - Modified formalism
 - Experimental techniques
 - Monte Carlo simulations
- Results
- Conclusions
- Future work

Modified TG-43 formalism¹

- Introduction
- **Methods**

•

- Results
- Conclusions
- Future work

TG-43U1
$$\dot{D}(r,\theta) = S_K \cdot \Lambda \cdot \frac{G_P(r,\theta)}{G_P(r_0,\theta_0)} \cdot g_P(r) \cdot F(r,\theta)$$

Modified Formalism

DeWerd et al., "A modified dose calculation formalism for electronic brachytherapy sources," Brachytherapy, accepted for publication (2015).

- Introduction
- Methods
- Results
- Conclusions
- Future work

- Measurements performed:
 - Before and after TLD measurements
- Method the UWADCL uses for transferring the NIST standard to clinical well chambers
- Insert designed at UWMRRC to accommodate Xoft Source²

HDR 1000 Plus well chamber¹

1. Standard Imaging, Middleton, WI

2. Davis, S. D. (2009). Air kerma strength determination of a miniature x-ray source for brachytherapy applications. Ph.D. dissertation, University of Wisconsin-Madison.

- Methods
- Results
- Conclusions
- Future work

- Methods
- Results
- Conclusions
- Future work

Manufacturer Test Fixture

- Introduction
- Methods
- Results
- Conclusions
- Future work

Water Phantom

- Methods
- Results
- Conclusions
- Future work

Captain's Wheel

- Introduction
- Methods
- Results
- Conclusions
- Future work

2. Standard Imaging, Middleton, WI

- Introduction
- Methods
- Results
- Conclusions
- Future work

Introduction **Methods**

Results

- Conclusions
- **Future Work**

- Captain's wheel:
 - Dose-rate conversion coefficient
 - Radial dose function
 - Azimuthal anisotropy
- Liquid water medium:
 - Avoids water-mimicking plastics
 - Avoids uncertainties associated with converting from dose-tosolid phantom to dose-to-liquid water¹
 - Only water is between source and TLDs

Stainless steel collimator :

- Introduction
- Methods

- Results
- Conclusions
- Future Work

Stainless steel collimator

Ti applicator Collimator lip Stainless steel top Slit – 0.001" Kapton sheet Stainless steel bottom

Visual editor rendering

TLD Correction Factors

Introduction

- Methods
- Results

- Conclusions
- Future Work

- TLD-100 LiF:Mg,Ti microcubes:
 - Sorted to a reproducibility of 2%
 - Handled according to the Cameron process
- Analysis:

$$\dot{D}(r,\theta) = \frac{R \cdot N \cdot \left(\frac{k_{bq(Axxent)}}{k_{bq(60_{Co})}}\right)}{C(r) \cdot t}$$

- R TLD reading in nC corrected for individual chip factors and background
- N Calibration curve conversion from nC to cGy
 - $\frac{\frac{k_{bq(Axxent)}}{k_{bq(60_{C_0})}}$ Intrinsic energy dependence correction factor
- C(r) Phantom correction factor
- t Total irradiation time

Monte Carlo simulations

Introduction

- Methods
- Results
- Conclusions
- Future Work

- Version 5 of the Monte Carlo N-Particle code (MCNP5) was used to¹:
 - Perform a computational dosimetric characterization
 - Determine measurement correction factors
- The source and applicator were modeled using material and dimension specifications provided by Xoft Inc.
 - Davis developed and verified the original bare source model²
- χ_{Ti} , $g_{Ti}(r, \theta)$, and $F_{Ti}(r, \theta)$: collision-kerma tally (F6)
- C(r): energy deposition tally (*F8)

2. Davis, S. D. (2009). Air kerma strength determination of a miniature x-ray source for brachytherapy applications. Ph.D. dissertation, University of Wisconsin-Madison.

^{1.} X-5 Monte Carlo Team (2005). MCNP – A General Monte Carlo N-Particle Transport Code, Version 5, Report LA-UR-03-1987. Los Alamos National Laboratory, Los Alamos, NM.

Cervical applicator implementation

- Dwell-position-dependent polar anisotropy
- Cervical applicator does not have a uniform thickness of titanium
 - Rounded dome is ~0.5 mm thick
 - Barrel ~0.4 mm thick
 - Anode geometry
 - Changing air gap distance
- Position of the source will impact the dose distribution surrounding the applicator
- Simulations: 0, 6, 12 mm pullback

- Introduction
- Methods
- Results
- Conclusions
- Future Work

 $\theta = 30^{\circ}$ 0 mm pullback 6 mm pullback 12 mm pullback

- Introduction
- Methods
 - Results
- Conclusions
- Future work

- Introduction
- Methods
- Results
 - Dose-rate conversion coefficient
 - Azimuthal anisotropy
 - Radial dose function
 - Polar anisotropy
- Conclusions
- Future work

Dose-rate conversion coefficient

- Introduction
- Methods

•

- Results
- Conclusions
- Future Work

DRCC results

Analysis

- 3 applicators and 1 source
- Is one representative DRCC value acceptable for all applicators?
- 1-Way ANOVA analysis
- There is no statistically significant difference between the applicators
 - Azimuthal anisotropy

Radial dose function

- Introduction
- Methods
 - Results
- Conclusions
- Future Work

distance /cm	MC bare source	MC 6 mm	% diff
1	1.000	1.000	0.00
2	0.634	0.886	-28.4
3	0.463	0.770	-39.9
4	0.356	0.661	-46.1

Radial dose function

- Introduction
- Methods
 - Results
- Conclusions
- Future Work

Expected uncertainty ~ 5% (k=1)

- Introduction
- Methods
 - Results
- Conclusions
- Future Work

- Introduction
- Methods
- Results
- Conclusions
- Future work

- Introduction
- Methods
- Results
- Conclusions
- Future work

- Introduction
- Methods
- Results
- Conclusions
- Future work
- NIST has established an air-kerma rate standard for the Xoft Axxent[®] source
 - Need for NIST traceability for other electronic brachytherapy sources
- Established a modified TG-43 dosimetry formalism
 - Implementation by Xoft (an iCAD company) is ongoing
 - Applied to other electronic brachytherapy sources
- A representative TG-43 dosimetry dataset is appropriate
- Multiple datasets can be utilized to accommodate the geometry of the applicator

- Introduction
- Methods
- Results
- Conclusions
- Future work
- Repeat Captain's wheel measurements with multiple sources
- Polar anisotropy measurements
 - TLD and film
- Azimuthal anisotropy measurements
 - Contribution from source vs. applicator positioning
- Attix Free Air Chamber measurements

- Larry DeWerd, PhD
- Wesley Culberson, PhD
- John Micka
- UWMRRC staff and students
- UWADCL customers
- Xoft Inc. (a subsidiary of iCAD) for providing partial funding for this work
- NIH grant T32-CA009206

DCF Uncertainty

	Relative Standard Uncertainty (%)	
Parameter	Type A	Type B
R-corrected TLD reading		
TLD reproducibility	3.97	0
TLD positioning	0.42	0
TLD irradiation time	0.14	0
PMT linearity correction	0	0.1
Reader stability	0	0
N-calibration coefficient		
Calibration curve deviation	1.47	0
Air-kerma rate determination	0	0.8
TLD positioning	0	0.1
PMT linearity correction	0	0.1
Field uniformity	0	0
Reader stability	0	0.1
Air-kerma rate determination	1.52	0.5
Phantom correction (Axxent component)		
MC statistical uncertainty	0.05	0
Photon spectrum	0	0.21
Cross section	0	0.26
Phantom correction (Co ⁵⁰ component)		
MC statistical uncertainty	0.07	0
Photon spectrum	0	0.04
Cross section	0	0.01
Energy dependence correction		
Energy dependence determination	0.99	0.97
Energy dependence application	0	0.25
Combined uncertainty	4.63	1.34
Total uncertainty (k=1)	4.8	
Expanded uncertainty (k=2)	10	

MCNP simulation results

Visual Editor rendering

This is without any flexing of the applicator. We know the applicator was centered in the acrylic.

- Introduction
- Challenges
- Methods
- Conclusions
- Future Work

- Introduction
 - Xoft source, cervical applicator
 - State challenges
 - NIST traceable
 - New formalism
 - Account for applicator (show MCNP and what happens if we don't account for applicator)
 - Dwell position dependent polar anisotropy
 - Applicator-to-applicator variation
- Approach
 - MCNP
 - Attix FAC
 - Well chamber NIST-traceable wc cal coefficient
 - TLD-100 microcubes
 - Anode output profiles
- Conclusions
- Future work
 - Additional source measurements
 - Attix FAC measurements

- Challenges
- Methods
- Results
- Conclusions

- AAPM's TG-43¹ dosimetry protocol
 - Homogeneous patient geometry
 - Ignores the presence of any applicators
 - Calculated dose overestimates the actual dose received by the patient
- Need to quantify the effect of the applicator
- Need to develop a representative set of parameters that accounts for the presence of the applicator
 - Applicator-to-applicator variation
- Applicator geometry introduces dwell-position-dependent polar anisotropy

^{1.} Rivard, M. J., Coursey, B. M., DeWerd, L. A., Hanson, W. F., Huq, M. S., Ibbott, G. S., Mitch, M. G., Nath, R., and Williamson, J. F. (2004). Update of AAPM Task Group No. 43 report: A revised AAPM protocol for brachytherapy dose calcualtions. Med. Phys., 31:633-674.

- Challenges
- Methods
- Results
- Conclusions

- AAPM's TG-43¹ dosimetry protocol
 - Homogeneous patient geometry
 - Ignores the presence of any applicators
 - Calculated dose overestimates the actual dose received by the patient
- Patient impact
 - Under dosing of the patient
 - Inaccurate calculations of dose to OAR
- Need to quantify the effect of the applicator
- Need to develop a representative set of parameters that accounts for the presence of the applicator

^{1.} Rivard, M. J., Coursey, B. M., DeWerd, L. A., Hanson, W. F., Huq, M. S., Ibbott, G. S., Mitch, M. G., Nath, R., and Williamson, J. F. (2004). Update of AAPM Task Group No. 43 report: A revised AAPM protocol for brachytherapy dose calcualtions. Med. Phys., 31:633-674.

UW Attix Free Air Chamber

- Introduction
- Challenges
- Methods
- Results
- Conclusions

- Primary air kerma measurement comparable to NIST
 - Measure up to 50 kV x-rays
- Measured air-kerma rate of the source at 50 cm
 - Azimuthal anisotropy accounted for by measuring at each of the cardinal angles
- Standard Imaging¹ SuperMAXTM electrometer was used to measure the charge and current

UW Attix Free Air Chamber