# Small field dosimetry in radiotherapy from a standpoint of basic research

**Guerda Massillon-JL** 

massillon@fisica.unam.mx

Instituto de Física,

Universidad Nacional Autónoma de México, México

# **Small fields in radiotherapy**

#### **Stereotactic radiosurgery (SRS)**

Intensity Modulated radiotherapy



SRS : fields of 4 mm -60 mm diameter





IMRT beam-lets of 2x2 to 6x6 mm<sup>2</sup>

Sánchez-Doblado, 2010

Radiation fields with a size smaller than the lateral range of charged particles **The physical processes?** 

## **Small fields in radiotherapy**

Variation of the electron fluence in the lateral direction of the radiation field

Very short range of the electrons generated

↓ High ionization density problem

# Which is the situation?

Great variations of the absorbed dose in the lateral direction of the radiation field due to the short range of the electrons

♥ Difficulty to make accurate dose measurements
↓
Very high-resolution, water equivalent and very small size dosimeters are needed

# **High ionization density Dosimetry?**

Study, through a dosimeter response, the high pattern of energy deposited in the matter by ions or electrons at a very short distance from their main tracks

↓ Understanding of Dosimeter response versus linear energy transfer, LET



# **Electron interactions**



Villarrubia and Ding, J. Micro/Nanolith. 2009

# **Dosimetry: The challenge**

**One quantity, two definitions:** 

1) Product of the electron fluence (cm<sup>-2</sup>) generated and the LET or restricted mass stopping power averaged over the electron energy spectrum (MeVcm<sup>2</sup>/g)

2)  $\frac{dE}{dm}$  = Ratio of the energy deposited (J) and the irradiated mass (kg)

# Absorbed dose (Gy)

# **Dosimetry: The challenge**

#### **Two Questions?:**

- How do we know the electron fluence (cm<sup>-2</sup>) and the LET or restricted mass stopping power?
- 2) How do we know the irradiated mass?

# Absorbed dose (Gy)?

# How energy is transferred to the matter?

**Bethe Aproximation and the classical limit** 

$$\left(\frac{dT}{\rho \, dx}\right)_c = k \left[ \ln \left( \frac{\tau^2(\tau+2)}{2(I/m_0 c^2)^2} \right) + F^{\pm}(\tau) - \delta - \frac{2C}{Z} \right]$$

$$k \equiv \frac{2Cm_0c^2z^2}{\beta^2} = 0.1535 \frac{Zz^2}{A\beta^2} \frac{MeV}{g/cm^2} \qquad C \equiv \pi (N_A Z/A) r_0^2$$

$$F^{-}(\tau) \equiv 1 - \beta^{2} + \frac{\tau^{2}/8 - (2\tau + 1)\ln(2)}{(\tau + 1)^{2}} \qquad \tau = T/\text{moc}^{2}$$

# **Electron interactions**



The ionization potential concept, *I*, is valid only for electron with energies higher than the binding energy of the deepest inner shell of an atom

₩

Bethe approximation 10<sup>3</sup> does not hold in the low-energy region.

### **Interaction of charged particles** with energy below 1 keV?

#### Existing Monte Carlo codes

- EGSnrc, Canada (Bethe approximation)
- Penelope, España (Dielectric Function: 100 keV-100 eV)
- ➢ Geant4, CERN (∼ Penelope)
- MCNP, Los Alamos National Laboratory, EUA (Bethe Approximation)
- NOREC, Oak Ridge Laboratory (Track Structure Theory in water), used of Hartree-Fock Wave Functions of H and O atoms for energy below 1 keV

# Which should be the response?

Development of Research projects relative to Low-energy radiation is fundamental to improve our knowledge about the physical processes of the radiation interaction with matter at the atomic level

# In the mid-time, should we leave the patient alone?

NO!

# Which is the situation?

## **Reference Dosimetry**

Absolute calibration
 Field size of 10 cm x 10 cm
 Beam quality factor under reference conditions

$$D_{w,Q} = \left( \overline{M}_{Q \ (corregida)} \ k_{pol} \ k_s \right) N_{D,w,Q_0} \ k_{Q,Q_0}$$

All ionization chambers are calibrated under these or similar conditions



#### IAEA TRS-398



#### Dosimetric Variation with Detectors



# **Possible Solutions**

#### AAPM/IAEA 2008:

New formalism for the dosimetry of small and composite fields with the intention to extend recommendations given in conventional Code of Practices for clinical reference dosimetry based on absorbed dose to water. Alfonso *et al.* Med. Phys. 35, (2008)

#### **AT NIST 2008:**

A special very small field of 1 cm<sup>2</sup> <sup>60</sup>Co gamma beam has been characterized with Radiochromic film and TLDs within an uncertainty of 3–4% for gel calibrations.

#### Massillon-JL et al., Med. Phys. 35 2920 (2008)

Relevant to ongoing efforts in the medical community to develop protocols for small field dosimetry.

#### Massillon-JL et al. Appl. Radiat Isotopes, (2010)

#### **NIST/Univ of Pittsburgh** MC.

It is important to identify and evaluate new dosimeters that are suitable for measurements of absolute dose in small and nonstandard fields.

Novotny et al. Med. Phys. 36, 2009

### Why films are not accepted as reference?

- > LOW UNCERTAINTIES? NO
- > High spatial resolution? Yes
- > Dose rate independent?
- Energy dependent? Yes and NO
- > Tissue equivalent? Yes and NO
- Yes and NO Yes and NO

Yes

# How to reduce uncertainties in Films?

- ✓ Knowing the minimum limit of absorbed dose
- Evaluating uncertainties vs photon energy
- Determining the degree of energy dependence vs spatial resolution, color channel and absorbed dose

Massillon-JL *and* Zúñiga-Meneses, Phys. Med. Biol. **55** 2010 I D Munoz-Molina, B. Sc. thesis UNAM 2012 Massillon-JI et *al*. Physica Medica 2015 in revision Massillon-JL *et al*. IJMPCERO 2012

# Stereotactic radiosurgery: Gamma Knife and Modified linear acelerator

# **Absorbed dose to** water rate determined in the 10 x 10 cm<sup>2</sup> reference fields

| Detector                     | <sup>60</sup> Co gamma ray           | S                      | 6 MV X-rays                          |                        |
|------------------------------|--------------------------------------|------------------------|--------------------------------------|------------------------|
| S                            | x 10 <sup>-3</sup> Gys <sup>-1</sup> | IC <sub>1</sub> /other | x 10 <sup>-3</sup> Gys <sup>-1</sup> | IC <sub>1</sub> /other |
| <sup>a</sup> IC <sub>1</sub> | $11.292\pm0.141$                     | 1.000                  | $9.733\pm0.131$                      | 1.000                  |
| <sup>b</sup> IC <sub>2</sub> | $11.297 \pm 0.184$                   | 0.9995                 |                                      |                        |
| Alanine                      | $11.220\pm0.083$                     | 1.0065                 |                                      |                        |
| <sup>c</sup> IC <sub>3</sub> |                                      |                        | $9.625\pm0.135$                      | 1.0112                 |

Massillon-JL et al. PlosOne 2013

|        | Referen<br>compute               | ice absorbed dose to water rate<br>red in the modified accelerator for SRS |                           |                        |                        |                 |  |
|--------|----------------------------------|----------------------------------------------------------------------------|---------------------------|------------------------|------------------------|-----------------|--|
|        |                                  |                                                                            | Collimator diameters (mm) |                        |                        |                 |  |
|        |                                  | 7.5                                                                        | 10                        | 15                     | 25                     | 35              |  |
| imeter | Size                             | $(mGy MU^{-1})$                                                            | $(mGy MU^{-1})$           | (mGyMU <sup>-1</sup> ) | (mGyMU <sup>-1</sup> ) | $(mGyMU^{-1})$  |  |
| -V2-55 | $\sim 240^{a}$                   | $7.14\pm0.10$                                                              | $7.43\pm0.10$             | $8.13\pm0.10$          | $8.60 \pm 0.11$        | $8.79\pm0.11$   |  |
| D-100  | $3.1 \times 3.1 \times 0.89^{b}$ |                                                                            | $7.44 \pm 0.20$           | $8.16 \pm 0.14$        | $8.53 \pm 0.21$        | $8.73 \pm 0.19$ |  |
| anine  | $4.9^{\rm c} \ge 3.0^{\rm d}$    |                                                                            |                           | $7.87\pm0.09$          |                        | $8.7 \pm 0.1$   |  |
| CD     |                                  | 6.4                                                                        | 7.08                      | 7.89                   | 8.35                   | 8.55            |  |

Massillon-JL et al. PlosOne 2013

#### **Reference absorbed dose to water rate computed in** the Leksell Gamma Knife® unit

|           |                               | Collimator diameters (mm) |                  |                |                |
|-----------|-------------------------------|---------------------------|------------------|----------------|----------------|
|           |                               | 4                         | 8                | 14             | 18             |
| Dosimeter | Size                          | $(mGy s^{-1})$            | $(mGy s^{-1})$   | $(mGy s^{-1})$ | $(mGy s^{-1})$ |
| MD-V2-55  | $\sim 240^{a}$                | $20.18\pm0.30$            | $22.23\pm0.34$   | $22.92\pm0.35$ | $23.31\pm0.36$ |
| TLD-100   | 3.1×3.1×0.89 <sup>b</sup>     | $19.34\pm0.27$            | $21.86 \pm 0.72$ | $22.28\pm0.52$ | $23.06\pm0.73$ |
| Alanine   | $4.9^{\circ} \ge 3.0^{\circ}$ |                           | $21.09\pm0.32$   | $21.47\pm0.24$ | $21.89\pm0.22$ |
| CD        |                               | 18.94                     | 20.83            | 21.48          | 21.82          |

Massillon-JL et al. PlosOne 2013

# Absorbed dose (Gy)

Massillon-JL et al. PlosOne 2013



# **Results:** IMRT-Dynamic MLC

#### **Gafchromic MD-V2-55**

Absorbed dose distribution (Gy) 40-35 30-L (mm) 20 8 15 10-5-0 10 15 35 25 30 20 5 40 HF (mm)

#### **Planning system**



D Cueva-Procel M.Sc. UNAM 2011





### **IMRT-DMLC: System planning vs Film**



D Cueva-Procel M.Sc. UNAM 2011

Difference: minimum: 15% ; maximum: 36%

# Stereotactic radiosurgery: Cyberknife unit

# IAEA/AAPM?



FIG. 2. Schematic overview of the dosimetry of small static fields with reference to a machine-specific reference field according to the formalism presented in this paper.

Alfonso et al. Med. Phys. 35, (2008)

#### Absorbed dose to water rate in a 10 x 10 cm<sup>2</sup> reference field at 100 cm SDD, 10 cm depth

|   | IC     | Where calibrated | Dose Rate<br>[cGy/MU] | Diff<br>[%] |
|---|--------|------------------|-----------------------|-------------|
| - | IC-A12 | NIST             | $0.785\pm0.004$       | NA          |
| Ι | C-2258 | IBA              | $0.787 \pm 0.010$     | 0.16        |
|   | IC-580 | ININ             | $0.804\pm0.010$       | 2.24        |

Aragon-Martinez et al. AIP Conf. Proc. 1626, 55-60 (2014)

#### Absorbed dose to water rate in 10 x 10 cm<sup>2</sup> and 5.4 cm x 5.4 cm fields at 80 cm SDD, 10 cm depth

|   |        | 10 cm x 10 cm         |              | 5.4 cm x 5.4 cm       |              |  |
|---|--------|-----------------------|--------------|-----------------------|--------------|--|
|   | IC     | Dose Rate<br>[cGy/MU] | Diff.<br>[%] | Dose Rate<br>[cGy/MU] | Diff.<br>[%] |  |
| Ι | C-A12  | $1.262 \pm 0.006$     | NA           | $1.023 \pm 0.005$     | NA           |  |
| Ι | C-2258 | $1.278 \pm 0.014$     | 1.27         | $1.037 \pm 0.011$     | 1.37         |  |
| Ι | C-580  | $1.311 \pm 0.013$     | 3.88         | $1.059 \pm 0.011$     | 3.52         |  |

Aragon-Martinez et al. AIP Conf. Proc. 1626, 55-60 (2014)

# Acknowledgments

#### Collaborators

- Ronaldo Minniti, NIST, USA
- Michael G. Mitch, NIST, USA
- Chris Soares, NIST, USA
- Porfirio Diaz-Aguirre, HSJ, MX
- Arnulfo Gomez-Munoz, HO, CMN, Siglo XXI

## Students

- Diego Cueva Procel, M. Sc. UNAM, MX
- Ivan Munoz-Molina, B. Sc. UNAM, MX
- Nestor Aragon-Martinez, M.Sc. UNAM. MX
- Lucero Zuniga-Meneses, B. Sc. UNAM, MX

## Grants

UNAM, PAPIIT-IN105813, Conacyt, Mexico 127409