Commissioning an IRay System for ocular stereotaxy using Integrated Tissue Air Ratio

23rd Annual CIRMS Meeting Gaithersburg, MD April 28th, 2015

Justin Hanlon, PhD Medical Physicist Oraya Therapeutics, Inc.

Overview

IRay System and wet AMD ITAR Dosimetry Method

In the USA the IRay® Radiotherapy System is an investigational device and is not available for sale

IRay System

Wet Age-related Macular Degeneration

Leading cause of vision loss for people over the age of 50 200,000 new cases of wet AMD in the USA every year

No cure – current standard of care is as-needed injections of anti-VEGF

Dose Distribution and Immobilization

Radiotherapy for wet AMD

History

Started ~25 years ago and continuing

EBRT and GKS attempted

Typical pilot study:

10-20 Gy in 2-3 Gy fractions

Most promising studies:

Bergink *et al*: 24 Gy in 4 fractions Char *et al*: 7.5 Gy in single fraction Avila *et al* (2): 24 Gy in single fraction

Clinical Rationale

Anti-angiogenic – preferentially destroys neovasculature

Anti-fibrotic – microfibroblast apoptosis

Anti-inflammatory – reduction in cellularity infiltrate

Pericyte knockdown in mature vessels – re-exposes VEGF receptors

Oraya Therapy

16 Gy in 1 fraction
<0.4 mSv effective dose
Non-invasive
~4 min x-ray time

INTREPID Clinical Trial

Randomized, sham-controlled, double blind study of the effect of low-energy X-ray in sparing anti-VEGF injections

Study population: <u>Non-Naïve</u> (≥3 inj.) wet AMD patients with persistent or recurrent disease activity

Target Population Differential Response at Year 2

51% of best responders received a mean of **1** injection over 2 years Vision in SRT group 4.4 letters superior to control group (P = 0.23)

ORAŶA

ITAR Dosimetry Method

Hanlon et. al., Med Phys 41, 021729 (2014)

Dosimetry for IRay System

Oraya beam: 100 kVp 4.2 mm spot size at isocenter 150 mm SAD 16 to 26 mm depth of interest ~3.4% falloff per mm at depth

Challenge:

Dearth of suitable detectors

P_{q,cham} unknown for suitable detectors

TG-61 requirements:

Water phantoms over plastic

Air filled detectors with energyindependency <2%

ITAR solution

R²

Dominant effect
Measure directly
Attenuation
Secondary effect
Measure directly
Scatter
Third order effect
MCNP

LSTAR(d) =
$$\frac{\dot{K}_{air,z=d}(d)}{\dot{K}_{ref}} = \alpha exp(-\beta * d)$$

LSTAR

$$TAR(d) = \alpha exp(-\beta * d) * C_{mat} * C_{scat}(d) = Aexp(-B * d)$$

ŶΑ มาเตรี

LSTARs for C_{mat}

C_{scat} tally volume

С	om	mi	ssi	ion	ing	San	npl	le

		LSTAR Measurements							
		kV	kV mA Ramp Down SDD Rdg Samples Rdg Time						
		100	16	1 sec	150 mm	60	30 sec		
d	Temp	Press	P _{TP}	Rdg	М _{гаw}	CV	Ń	$\dot{K}_{air,z=d}(d)$	LSTAR(d)
(mm)	(°C)	(mbar)	n/a	(pA)	(pA)	(%)	(pA)	(Gy/min)	n/a
0	24.2	1023.6	0.997	25.705	25.705	0.03	25.61	8.702	1.000
16.007	24.2	1023.5	0.997	13.015	13.015	0.02	12.97	4.406	0.5064
18.033	24.2	1023.4	0.998	12.099	12.099	0.04	12.06	4.097	0.4708
20.048	24.2	1023.4	0.998	11.262	11.262	0.03	11.22	3.813	0.4382
21.999	24.2	1023.5	0.997	10.549	10.549	0.02	10.51	3.571	0.4104
24.043	24.2	1023.6	0.997	9.849	9.849	0.03	9.81	3.334	0.3832

$\dot{K}_{ref} = \dot{K}_{i}$	air.z=0 =	8.702	(Gy/min)
LS	TAR(d) = α	exp(-β*o	d)
	α:	0.8805	(n/a)
	β:	0.0347	(1/mm)

ITAR Conversion							
d	LSTAR(d)	C _{mat}	C _{scat}	ITAR(d)			
(mm)	n/a	n/a	n/a	n/a			
16	0.5055	1.019	1.102	0.5677			
18	0.4717	1.019	1.103	0.5301			
20	0.4401	1.019	1.104	0.4951			
22	0.4106	1.019	1.105	0.4623			
24	0.3831	1.019	1.105	0.4313			
	ITAR(d) = Aexp(-B * d)						
		A:	0.9832	(n/a)			
		В:	0.0343	(1/mm)			

 $\dot{D}_{macula}(TPL) \stackrel{CPE}{\longleftrightarrow} \dot{K}_{ref} * Output Factor * Aexp(-B * TPL) * \left[\left(\frac{\overline{\mu}_{en}}{\rho} \right)_{air}^{w} \right]_{w} \stackrel{ORAYA}{}$

Comparison to traditional TAR

Easier to setup clinically

Field size independent – interesting for other applications?

Difficult to compare because of $P_{q,cham} \rightarrow AAPM$

Other commissioning and Self Test

Other commissioning and Self Test

Survey Map

Commercial strategy with clinical medical physicists

Commission during acceptance testing Share data and methods with local physicists Support further commissioning activities if necessary

Conclusions

IRay System and Oraya Therapy

INTREPID clinical trial results good

Currently available in the UK, Germany, and Switzerland

ITAR Dosimetry Method for Commissioning

Easy to measure clinically

More conceptually abstract than traditional TAR

