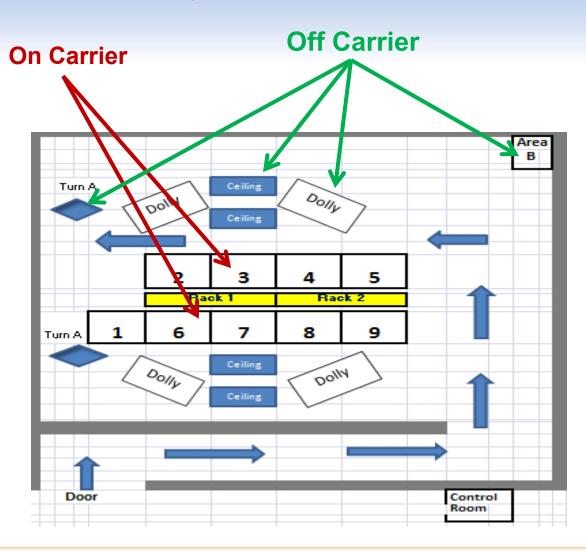
Standardization of Nuclear Component Off-Carrier Processing

ASTM E61 New Orleans, LA January 27, 2015 Ryan Tracy, STERIS Isomedix Services


History of Nuclear Component Processing

- Nuclear components processed as early as 1984
- Increased requests for STERIS Isomedix to provide gamma photons for component EQ testing
- Decreasing number of suppliers for EQ radiation exposures
 - Homeland Security Compensatory Challenges
 - Academic institutes closing programs (University of Maryland?)
- "Off-Carrier" opportunities
 - Long exposure times/dose-rates prohibit use of carrier/tote systems

Whippany Off-Carrier Locations

Current Process

- Each component is unique and requires unique mapping
- Facility places dosimeter at min and max positions on component (or phantom material)
- Dosimeter is run for >2 hours to establish a dose rate
- Dose rate is extrapolated to determine a timer setting required to meet min dose
- Component is left in the cell until timer setting is met
- Component released

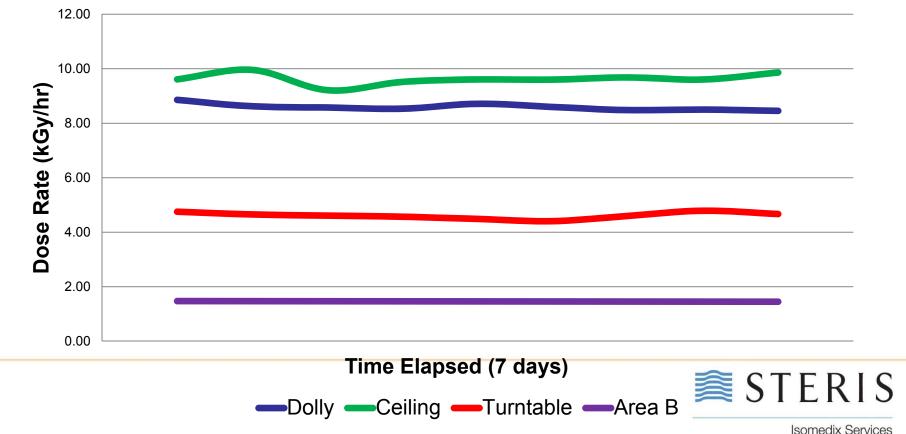
April 2014 NRC Inspection

Summary of Nonconformance 99901145/2014-201-01

On April 3, 2014, Steris was audited by the US NRC, Electrical Vendor Inspection Branch, Division of Construction Inspection and Operational Programs, Office of New Reactors . From an outcome of the inspection:

(STERIS)... failed to ensure that the measuring and testing system (e.g. the dosimeters, associated procedures, and dosimetry reading equipment) used to determine the applied radiation dose to nuclear components was properly controlled and calibrated. Specifically, the "Technical Report on Analysis of Dosimetric Uncertainties for Routine Use of the Red 4034 Dosimetry System", dated June 28, 2013, created by Steris for assessing the accuracy of radiation dose measurements, failed to account for all uncertainties in the process as related to the irradiation of nuclear components. Steris failed to account for the **density** of other product placed into the irradiation chamber, **source decay**, and location within the irradiation chamber. As a consequence, the actual radiation dose applied to nuclear components could be less than what was requested by Steris's Customers.

Next Steps


- Determine the effects of on-carrier density variability
- Determine the effects of source decay
- Work with IEEE (Institute of Electrical and Electronics Engineers) to respond to the NRC.

- Attempts to quantify the variability through experimentation:
 - Placed alanine dosimeters at fixed locations
 - Processed for seven days with normal on-carrier processing
 - Dosimeters were changed out @ approximately 100kGy
- Study was completed twice: May 2014 and September 2014

Based on the cyclical nature of the "On-Carrier" Customers; STERIS assessed density variations and the dose-rate impact on "off-carrier" locations by determining the dose rates over the course of 7 days:

Whippany Off-Carrier Dose Rates

Area	Study 1 (May 2014)	Study 2 (Sep. 2014)	Average (σ)
Dolly	0.034294	0.014897	2.22%
Ceiling	0.027674	0.020105	2.30%
Turntable	0.033285	0.028154	3.01%
Area B	0.038370	0.004339	1.27%*

- For a 95% confidence interval and a double tailed distribution (2) the density variability is 6.02%.

* Indicates very low sample size

- Further Review of Data 2005 2015
 - Intercomparison data at all off-carrier areas
 - 3 dose points per area
 - Variance can be represented as:

VAR(A,B,C) = VAR(A) + VAR(B) + VAR(C) - COV(A,B) - COV(B,C) - COV(A,C) $\therefore VAR(A,B,C) = 3\sigma_{dosimeter}^{2} + \sigma_{density}^{2} (3 - \frac{t_{a}}{t_{b}} - \frac{t_{b}}{t_{c}} - \frac{t_{a}}{t_{c}})$ - And solving for our variability from density:

$$\sigma_{density}^2 = \frac{(VAR(A, B, C) - 3\sigma_{dosimeter}^2)}{(3 - \frac{t_a}{t_b} - \frac{t_b}{t_c} - \frac{t_a}{t_c})}$$

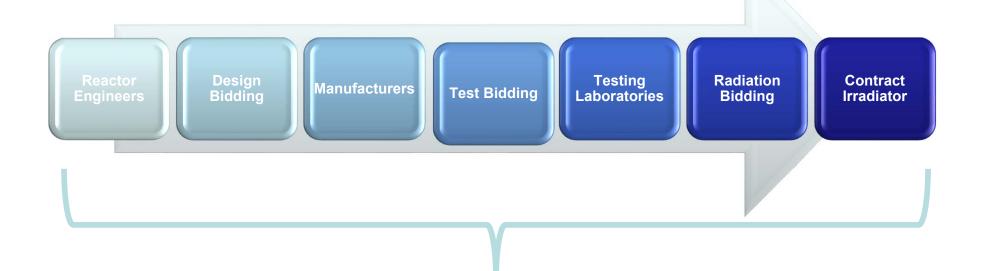
 $\therefore \ \sigma_{density} = \begin{cases} 0.01967 \ for \ Area \ A \\ 0.02015 \ for \ Area \ B \end{cases} \approx 0.0203$

- For a 95% confidence interval and a double tailed distribution (2) the density variability is conservatively 4.1% derived from historical data.
- This result is lower than from our experimental data, but of the same order of magnitude

Accounting for Source Decay

Cobalt Half-Life (Days): Original Cobalt Activity

1925	
100	


		Unadjuste			Γ	
	Actual	d	Actual	Unadjusted		Dose
	kGy/hr	kGy/hr	kGy/day	kGy/hr		Error
0	100.0000	100	2400	2400		0.000%
1	99.9640	100	2399.136	2400		0.018%
2	99.9280	100	2398.272	2400		0.036%
3	99.8920	100	2397.409	2400		0.054%
4	99.8561	100	2396.546	2400		0.072%
5	99.8201	100	2395.683	2400		0.090%
6	99.7842	100	2394.82	2400		0.108%
7	99.7483	100	2393.958	2400		0.126%
8	99.7124	100	2393.096	2400		0.144%
9	99.6765	100	2392.235	2400		0.162%
10	99.6406	100	2391.374	2400		0.180%
11	99.6047	100	2390.513	2400		0.198%
12	99.5688	100	2389.652	2400		0.216%
13	99.5330	100	2388.792	2400		0.234%
14	99.4972	100	2387.932	2400		0.252%
15	99.4613	100	2387.072	2400		0.270%
16	99.4255	100	2386.213	2400		0.287%
17	99.3897	100	2385.354	2400		0.305%
18	99.3540	100	2384.495	2400		0.323%
19	99.3182	100	2383.637	2400		0.341%
20	99.2824	100	2382.778	2400		0.359%
21	99.2467	100	2381.921	2400		0.377%
22	99.2110	100	2381.063	2400		0.395%
23	99.1752	100	2380.206	2400		0.413%
24	99.1395	100	2379.349	2400		0.431%
25	99.1038	100	2378.492	2400		0.449%
26	99.0682	100	2377.636	2400		0.467%
27	99.0325	100	2376.78	2400		0.485%
28	98.9969	100	2375.924	2400		0.502%
29	98.9612	100	2375.069	2400		0.520%
30	98.9256	100	2374.214	2400		0.538%

$$1 - \int_0^t \frac{A_0 * \left(\frac{1}{2}\right)^{t/t_{1/2}}}{A_E} dt$$

The source decay bias of <u>0.538%</u> is calculated as the cumulative effects of using a single dose-rate on Day 0 throughout a 30-day irradiation in which the source is decaying at a rate equal to the half-life of Co-60

Opportunities for Standardization

Opportunities for Standardization

- Other outstanding local questions:
 - Is this method of processing valid?
 - Use of fixed time length to establish dose rate?
 - Is use of a fixed source decay value @ 1 month acceptable?
 - How do we handle dosimetry uncertainty?
 - Does dosimeter placement require standardization?
 - What dose is reported?
 - What's the best method to determine dose rate variability?
 - Is 10 years of data enough? (sure hope so...)
 - What unit do we report dose (Mrad or kGy)?

Opportunities for Standardization

- Other outstanding global questions:
 - Does ASTM E10 / CIRMS know of this issue?
 - How should end users (power plants) use this data?
 - How do manufacturers use this data?
 - How do testing labs request and report this data?
 - Are these considerations at other facilities?
 - Will the NRC accept this analysis?
 - August 2014 response indicated a "okay for now" mentality

