

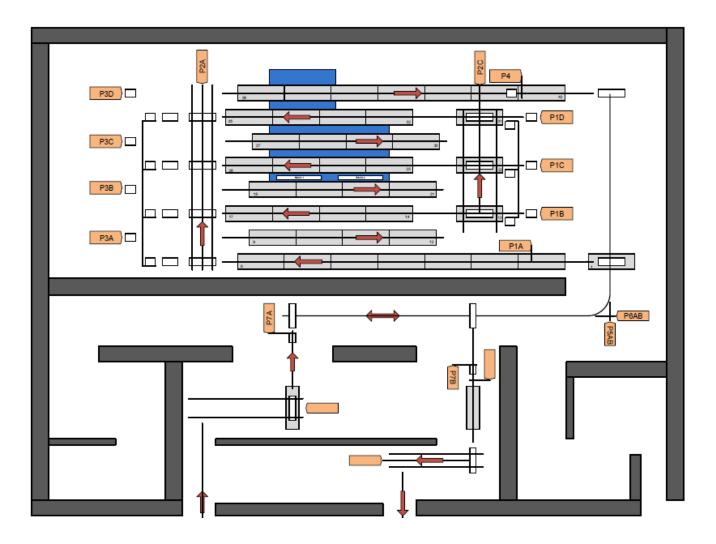
Mathematical Modeling - Support of Change Control

CIRMS Kim Patton April 27-29, 2015

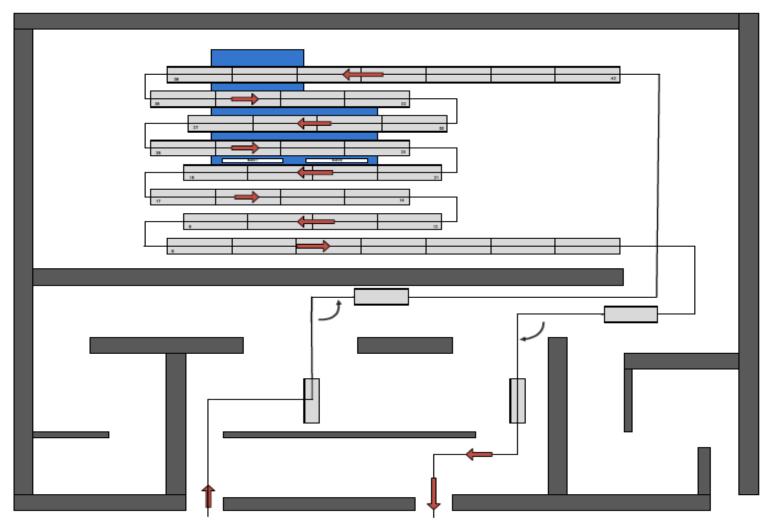
Mathematical Modeling

Modeling has many advantages

- Complement or supplement to actual dosimetry
- Reduce dosimetry monitoring locations
- Design of irradiation facilities
- Optimize dose distribution at existing facilities
- Reduce validation activities
- Assess impact of changes in product composition, loading configuration and irradiator design on dose distribution


Overview - Sterilization Project

- Requalify Irradiator after Machine Re-Design/Reload
 - Reload
 - Rail Replacement
 - Reverse Flow
 - No change to carriers or source rack
- Time Allotted by Production following OQ 2 days
- Estimated Time to Complete minimum 5,7 days
- Reduce Dosimetry Requirements
- Mathematical Modeling
- Resume Processing within 48 hours of OQ


Sterilizer Diagram – Pre Modifications

Sterilizer Diagram – Post Modification

Planning Stages

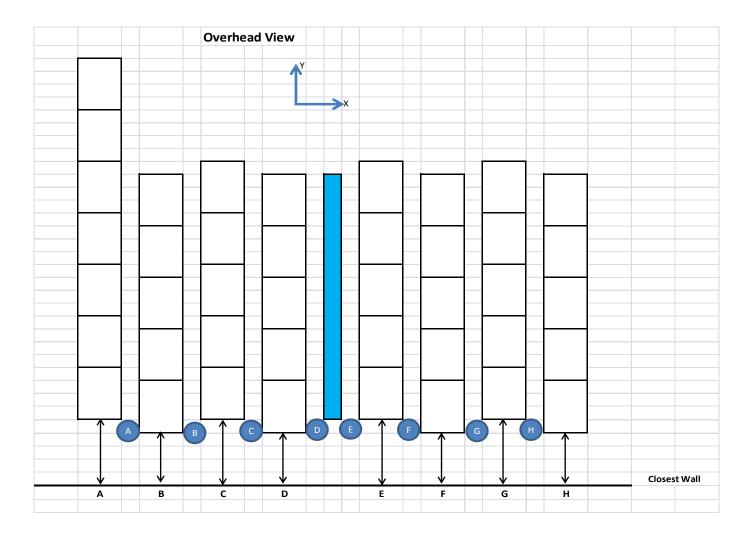
- Project Planning Begins
- Group Recommendation Reload first and perform 2 OQ's
 - Like for Like Comparison Does A = A?
- Enlist Support for Mathematical Modeling Approved
- PQ contingent on OQ results

Scope of Project and Timeline

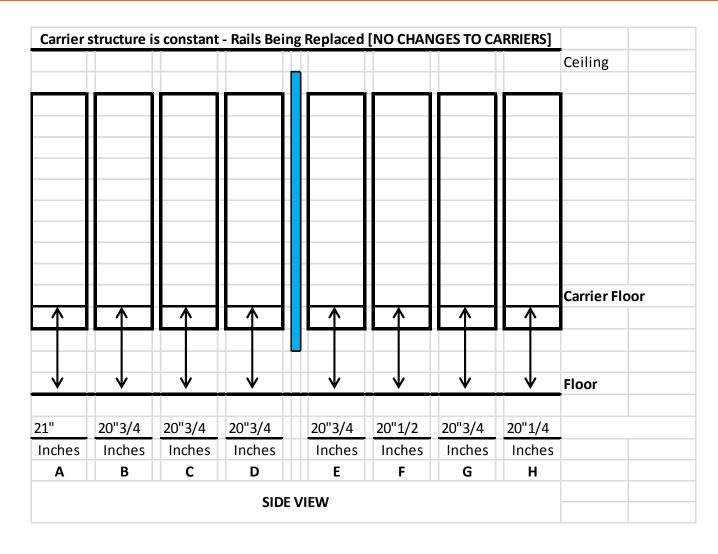
٠	Reload	2 days
•	OQ1 using Low and High density dunnage	1 day
•	Dosimetry Reading / Evaluation / Report	10 days available
•	Replace In-Cell Transit and Reverse Flow	2 weeks
٠	OQ2 using Low and High Density Dunnage	1 day
٠	Dosimetry Reading	24 hours
•	Dosimetry Evaluation and Report	2 days
•	Return to production	1 day

Pre-Work - Modeling Deliverables

- Review Cobalt pencil placement Current and proposed load
- Review of available OQ/PQ data previous 2 years
- Plant validation strategy review protocols, provide suggestions
- Mathematical model, Simulations, and Interpretation
- Summary of load equivalence
- Goal for completion of all activities
- Future modeling


Pre-Work - Building the Model

- Critical Measurements and Source Load
 - Distance between carriers (X)
 - Relative Measurement Carrier to nearest wall (Y)
 - Floor of Carrier to Floor of Cell (Z)
 - Width of Source Rack
 - Current Source Load (Nordion)


Pre-Work – Building the Model Critical Measurements

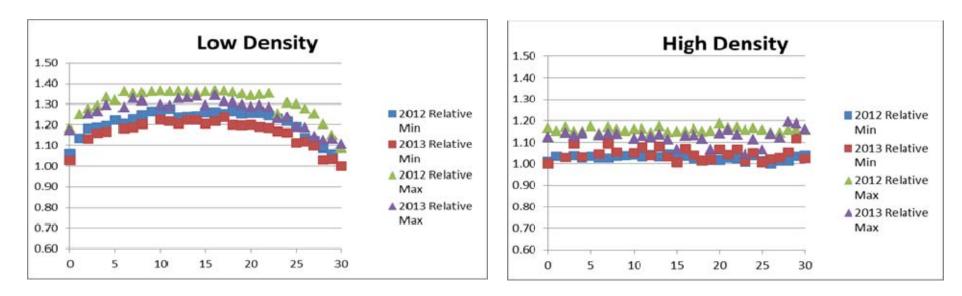
Pre-Work – Building the Model Critical Measurements

Pre-Work - Dosimetry

- Dosimeter Placement emphasize anticipated regions of minimum and maximum absorbed dose – Based on previous 2 OQ's
- Dosimeter Reduction Fewer dosimeters on intermediate areas
- 2 previous loads were determined to be equivalent
- Additional dosimeters selected in order to confirm the presence of absorbed dose values between expected dose minima and maxima (energy deposition gradients)

Pre-Work - Dosimetry

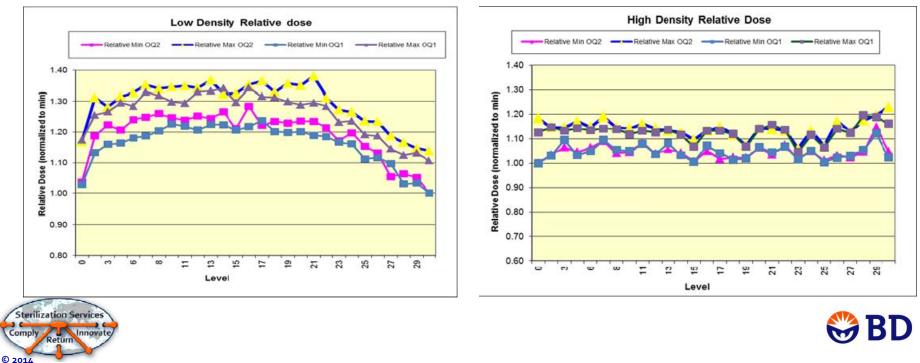
- Diagram Locations Monitored
- Preparation of Dosimeter Boards
 - Follow Diagram
 - Create a grid on dose board
 - Planes
 - Locations
 - Levels


		F	Plane	Α			F	Plane	В			F	Plane	С	
	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
0		X		X	X	X	X	X	X	X		X		X	X
1								X							
2	Х	X	Х	Х	Х			Х			Х	X	X	X	Х
3	X		X								X		X		
4	X	X	Х	Х	X			X			X	X	X	X	X
5															
6		X		Х	Х			Х				X		X	Х
7	X		Х								X		X		
8		X		X	X			X				X		X	X
9															
10	X	X	Х	Х	X			X			X	X	X	X	X
11	X		X								X		X		
12		X		X	X			X				X		X	X
13	X		X								X		X		
14		X		X	X			X				X		X	X
15						Х	X	X	X	X					
16		X		X	X							X		X	X
17	X		X					X			X		X		
18		X		Χ	X	X	X	X	X	X		X		X	X
19						Х	Х	Х	X	X					
20	X	X	X	X	X						X	X	X	X	X
21	X		X					X			X		X		
22	X	X	X	X	X						X	X	X	X	X
23						X	Х	X	X	X					
24		X		X	X							X		X	X
25						X	X	X	X	X					
26		X		X	X	X	X	X	X	X		X		X	X
27						X	X	X	X	X					
28		X		X	X	X	X	X	X	X		X		X	X
29	X		X								X		X		
30	Х	X	Х	Х	Х	Х	Х	Х	Х	X	Х	X	X	Х	X

OQ 1 Acceptance Criteria

- Training to the Protocol Complete ✓
- Carrier absorbed dose distribution is evaluated via a minimum of triplicate carrier-based measurements -√
- Dose values shall be within calibration limits of the dosimeters ✓
- Absorbed dose minima and absorbed dose maxima are identified and relative doses are plotted and compared with previous - ✓

OQ 1 Acceptance Criteria


- Dose uniformity for low/high density established
 - If greater than ±5%, a PQ will be performed.
 - Dose Uniformity Ratio was the same for high density and within the required 5% for the low density ✓
 - No PQ required Product Dose Uniformity remains as determined in the last
 PQ ✓
- Low/High density CV's are found to demonstrate a reproducible delivery of absorbed dose to specified ACE positions
 - CV's exceeding 3% re-examined
 - High density had 7 of 207 data points that exceeded 3%. Overall average % cv was 1.5 ✓
 - Low density had 9 of 207 data points that exceeded 3%. Overall average % cv was 1.7

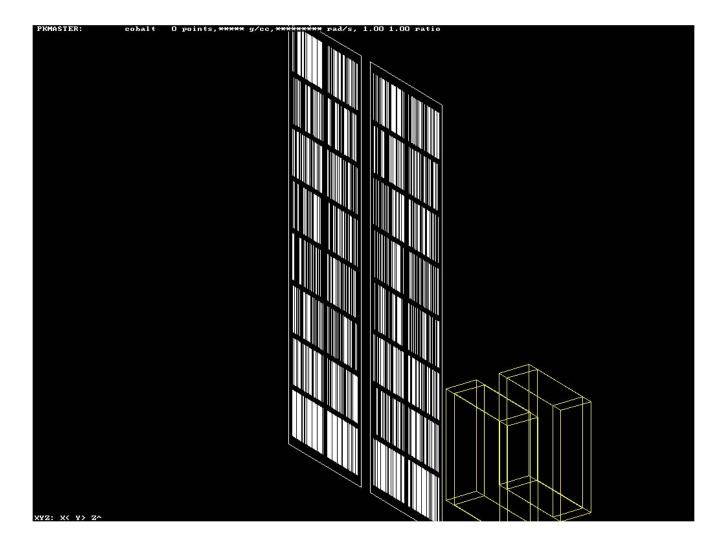
OQ 2 Acceptance Criteria

- Training to the Protocol Complete \checkmark
- Carrier absorbed dose distribution is evaluated via a minimum of triplicate carrier-based measurements ✓
- Dose values shall be within calibration limits of the dosimeters \checkmark
- Absorbed dose minima and local absorbed dose maxima are identified and relative doses are plotted and compared with OQ 1 - ✓

OQ 2 Acceptance Criteria

- Dose uniformity for low/high density established
 - If greater than ±5%, a PQ will be performed.
 - Dose Uniformity Ratio was within the required 5% for the low and high density ✓
 - Product Dose Uniformity remains as determined in the last PQ \checkmark
- Low/High density OQ CV's are found to demonstrate a reproducible delivery of absorbed dose to specified ABC positions ✓
 - CV's exceeding 3% re-examined
 - High density had 6 of 207 data points that exceeded 3%. Overall average % cv was 1.8
 - Low density had 1 of 207 data points that exceeded 3%. Overall average % cv was 1.5

Mathematical Modeling

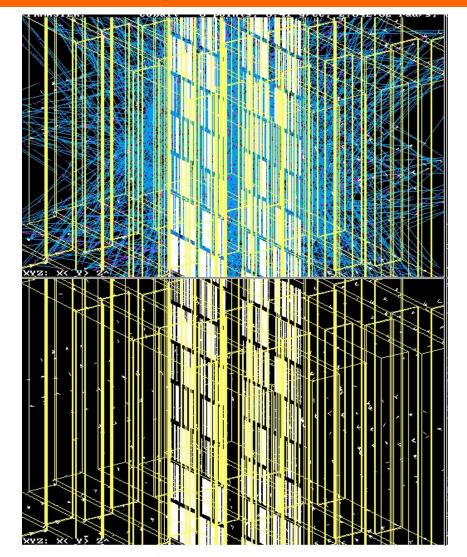

- Changes to the Percent Contribution Insignificant
 - Previous to current
 - Pre-modification to Post-modification
 - Verified by Independent BD Dosimetry

Row Number		Loading No. 25	Loading No. 25	Loading No. 24	Difference
		(L25)	(L25)	(L24)	
		[Pre-Mod]	[Post-Mod]		
1		14.29	14.29	14.29	0
2		12.21	12.21	12.21	0
3		11.39	11.39	11.4	-0.01
4		11.4	11.4	11.39	0.01
5		11.38	33.38	11.39	-0.01
6		11.39	11.39	11.38	0.01
7		12.2	12.2	12.21	-0.01
8		15.72	15.72	15.73	-0.01
	Total	100%	100%	100%	


Mathematical Modeling Pencil Diagram

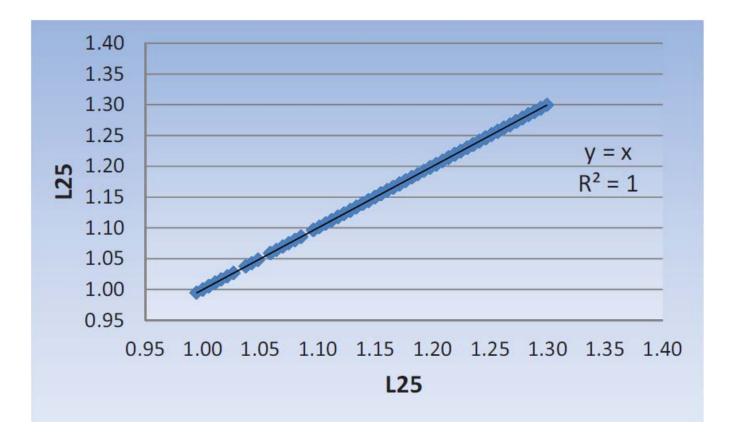
Mathematical Modeling Pencil Diagram

Mathematical Modeling Cherenkov


Cherenkov radiation - The characteristic blue glow in the cobalt pool

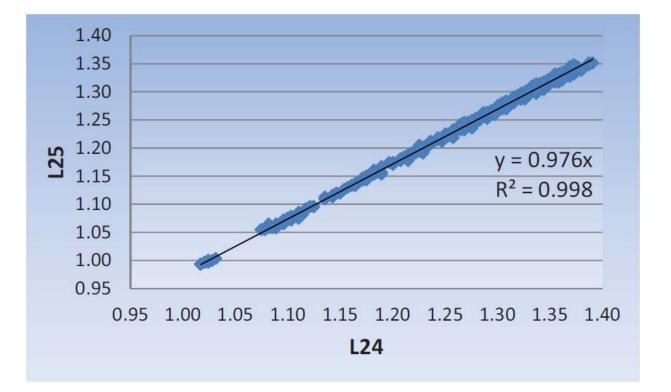
Mathematical Modeling Simulated Dosimetry

Mathematical Modeling Dosimetry


- Theoretical performance of the irradiator used a point kernel-based mathematical model and simulation was performed
- Theoretical (simulated) and experimental (actual) dosimetry for OQ1 and OQ2 were evaluated
- The energy deposition prior to and following the modification was as expected, demonstrating functional equivalency as per the acceptance criteria
- The simulation results demonstrated good-to-excellent functional equivalency pre/post modification
- Dosimetry data generated from actual dosimetry results confirmed equivalence

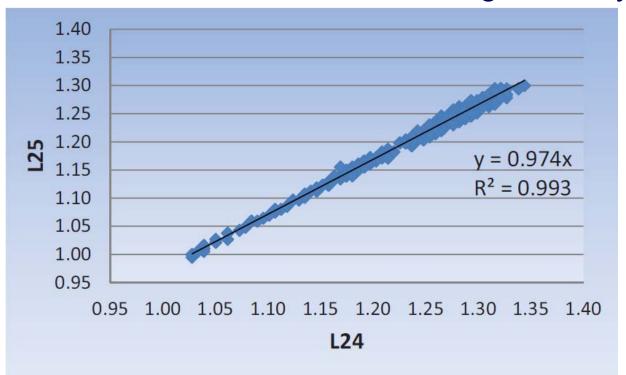
Theoretical Equivalence

• Simulated Absorbed Dose Ratio – scaled to 0B3



Theoretical Equivalence

• Simulated Absorbed Dose Ratio – Low Density



Theoretical Equivalence

• Simulated Absorbed Dose Ratio – High Density

Summary

- Project was Successful Authorization to Process within Goal of 48 hours
- Theoretical Evaluation
 - Load 2 is equivalent to Load 1
- Theoretical Evaluation
 - Load 3 is equivalent to Load 2
- Experimental Dosimetry Absorbed Dose Delivery
 - Load 3 is equivalent to Load 2
 - Post-modification absorbed dose is equivalent to Pre-modification absorbed dose
- Functional Evaluation
 - Replacement of the transport rails and the redirection of the carriers through the cell - Functionally Equivalent A = A

No Questions

