Radiological Traceability Program (RTP) between NIST and the DOE Radiological and Environmental Science Laboratory (RESL)

Svetlana Nour Kenneth Inn Jerry LaRosa Jackie Mann



0

21st Annual Council on Ionizing Radiation Measurements and Standards Meeting (CIRMS) October 22-25, 2012



## Traceability

- The formal definition of traceability is the ability to interrelate uniquely identifiable entities in a way that is verifiable.
- A Radiological Traceability is the ability to relate measurement's result to NIST reference value and well document the recorded identification and evaluation.





## **Performance Test / Evaluation**

- PT determines the performance of individual laboratories for specific tests or measurements and is used to monitor laboratories' continuing performance.
- A PT is an assessment that requires an examinee to actually perform a task or activity, rather than simply answering questions referring to specific parts.
  - - what is your dissolution procedure
  - $\circ$  what is the tracer

o ... etc.

- o what is the separation scheme
- o what is the source preparation
- ${\rm o}$  what is the spectrum analysis approach





## **Proficiency Testing**

- The successful completion of a well-designed PT can validate the measurement method, technical training, traceability of standards, and uncertainty budgets of the laboratory.
- PT can provide a good indication about the quality of the reported results.
- Failing a PT can identify nonconformities within the laboratory quality system, and allow the laboratory to improve their processes before the nonconformities come to the attention of the laboratory's customers.
- Laboratories appreciate the lessons learned in the experience.
- PT reports can provide information on where a laboratory may need improvement.

## How do you need to perform?

- To assure and maintain your capability to have measurements that pass certain requested criteria to be traceable to NIST.
- If you are a PT Provider, also assure and maintain the capability to prepare testing samples.
- The Quality Assurance guards your performance.







![](_page_5_Figure_1.jpeg)

National Institute of Standards and Technology

## Who are the Players?

### ≻ NIST

- >Reference Laboratory
- Accrediting Organization
- Monitoring Laboratory
- Service Laboratory

![](_page_6_Picture_6.jpeg)

![](_page_6_Picture_7.jpeg)

## Radiological and Environmental Science Laboratory (RESL)

- RESL is the designated **Reference Laboratory for DOE** and the Nuclear Regulatory Commission (NRC) Radiological Measurement Assurance Program (RMAP).
- RESL maintains direct traceability to NIST through

Radiological Traceability Program (RTP).

- DOE authorized RESL to prepare and distribute PT materials to DOE's laboratories.
- RESL covers 2 DOE Laboratory Accreditation Programs:
  - Environmental Health (in-vivo & in-vitro bioassay)
  - Environmental Management (monitoring & remediation).

![](_page_7_Picture_8.jpeg)

![](_page_7_Picture_9.jpeg)

![](_page_8_Figure_0.jpeg)

- It is designed to provide a mechanism for evaluating the ability of RESL scientists to prepare PT materials containing known activities of various radionuclides and to verify the PT samples they prepared.
- NIST and RESL prepare and exchange PT materials as defined in the RTP's Statement of Work (SOW).

![](_page_8_Picture_3.jpeg)

![](_page_8_Picture_4.jpeg)

## NIST $\longleftrightarrow$ RESL

- > NIST prepares PT materials for RESL to be analyzed.
- RESL do the analysis (characterization of the NIST PT material).

> NIST evaluates RESL's analytical results.

- NIST issues a Report of Traceability for characterization of PT material for:
  - air filters
  - soil
  - vegetation
  - water
  - synthetic urine
  - synthetic feces.

![](_page_9_Picture_11.jpeg)

![](_page_9_Picture_12.jpeg)

## RESL $\longleftrightarrow$ NIST

- RESL prepares Water PT samples for NIST to be analyzed.
- NIST performs verification measurements on samples and compares the known values with the experimental results generated by NIST.
- A Report of Traceability for Preparation of PT Material is issued.
  - The traceability criteria for this part of the Program is based on ANSI N42.22.

![](_page_10_Picture_5.jpeg)

![](_page_10_Picture_6.jpeg)

# **Traceability acceptance criteria for ability to Prepare a PT Material**

The traceability acceptance criteria for materials prepared by RESL to be consistent with ANSI N42.22-1995. The criteria has a statistical basis that includes the uncertainty of the measurements reported by NIST and RESL.

NIST reviews their measurement results and the reference values stated by RESL and performs the necessary statistical calculations to determine the level of compliance to the traceability criteria stated in ANSI N42.22.

![](_page_11_Picture_3.jpeg)

![](_page_11_Picture_4.jpeg)

### Traceability acceptance criteria for ability to Prepare a PT Material

The combined uncertainty is calculated according to ANSI N42.22 that incorporates NIST and RESL reported uncertainties.

 $|A_{NIST} - A_{Lab}| < 3^* \operatorname{sqrt}((U_{NIST})^2 + (U_{Lab})^2)$ 

A <sub>NIST</sub> = NIST nuclide concentration value A <sub>Lab</sub> = RESL nuclide concentration value U <sub>NIST</sub> = expanded uncertainty (k=1) for A<sub>NIST</sub> U <sub>Lab</sub> = expanded uncertainty (k=1) for A<sub>Lab</sub>

![](_page_12_Picture_4.jpeg)

![](_page_12_Picture_5.jpeg)

## Traceability Acceptance Criteria for characterization of PT material

The NIST traceability acceptance criteria for the nuclides and matrices prepared by NIST and sent to RESL is based on a relative percent difference from the NIST value, without consideration of the uncertainty of the measurement process. Stated Traceability limit in the RTP SOW = 9 %.

![](_page_13_Picture_2.jpeg)

![](_page_13_Picture_3.jpeg)

![](_page_14_Picture_0.jpeg)

### **Reporting Requirements**

The analytical results are reported in terms of specific activity of the spiking solution (activity per gram), and not the total activity contained in the sample.

- NIST provides RESL with the actual weight of spiking solution used to prepare each sample.
- NIST provides RESL with the actual weight of matrix used to prepare each sample.

![](_page_14_Picture_5.jpeg)

The natural background activity contained in the sample matrix is subtracted from all analytical measurements (blank correction).

![](_page_14_Picture_7.jpeg)

# Resolution of Results Outside of the Acceptance Criteria

If the difference between the RESL and NIST results is outside of the acceptance criteria, the RESL and NIST POCs will attempt to resolve the discrepancy. Additional PT samples may be submitted to RESL or NIST for re-analysis if resolution cannot be reached from discussions.

![](_page_15_Picture_2.jpeg)

0

![](_page_15_Picture_3.jpeg)

## Radionuclides for the Radiological Traceability Program (RTP)

| Nuclides                                                    | Category                        |
|-------------------------------------------------------------|---------------------------------|
| Th-230, U-238, U-234, Np-237,<br>Pu-238, Pu-239/240, Am-241 | Alpha Emitting Radionuclides    |
| H-3, Sr-90                                                  | Beta Emitting Radionuclides     |
| Cs-137, Cs-134, Co-60,<br>Mn-54, Co-57, Zn-65               | Gamma Emitting Radionuclides    |
| 1-125, 1-131                                                | Isotopically Pure Radionuclides |

![](_page_16_Picture_2.jpeg)

0

![](_page_16_Picture_3.jpeg)

### Matrix, Radionuclide, Activity Ranges, and Sample Size for RTP (NIST Samples Sent to RESL)

| Matrix | Spike                  | Sample mass | Activity              |  |  |
|--------|------------------------|-------------|-----------------------|--|--|
| Water  | Alpha (no Np<br>or Th) | 5 g         | 0.1 – 1.0 Bq/ sample  |  |  |
|        | H-3                    | 500 g       | I – 10 Bq/g           |  |  |
|        | Sr-90                  | 5 g         | I – 10 Bq/ sample     |  |  |
|        | 1-125, 1-131           | 5 g         | 100-2000<br>Bq/sample |  |  |
|        | Gamma                  | 5 g         | 10-100 Bq/ sample     |  |  |

![](_page_17_Picture_2.jpeg)

0

![](_page_17_Picture_3.jpeg)

### Matrix, Radionuclide, Activity Ranges, and Sample Size (NIST Samples Sent to RESL)

| Matrix      | Spike                  | Sample mass | Activity                |  |  |
|-------------|------------------------|-------------|-------------------------|--|--|
| Glass Fiber | Alpha (no Np<br>or Th) | l filter    | 0.1 – 1.0 Bq/sample     |  |  |
| Filters     | Sr-90                  | l filter    | I – 10 Bq/sample        |  |  |
|             | Gamma                  | l filter    | 10 – 100<br>Bq/sample   |  |  |
| Soil        | Alpha (no Np<br>or Th) | l g         | 0.1 – 1.0 Bq/ sample    |  |  |
|             | Sr-90                  | lg          | I – 10 Bq/ sample       |  |  |
|             | Gamma                  | 1000 g      | 0.1 – 1.0 Bq/g          |  |  |
|             |                        |             |                         |  |  |
| Vogototicz  | Alpha (no Np<br>or Th) | l g         | 0.1 – 1.0 Bq/<br>sample |  |  |
| Vegetation  | Sr <b>-9</b> 0         | l g         | I – 10 Bq/ sample       |  |  |
|             | Gamma                  | l g         | 10-100 Bq/ sample       |  |  |

### Matrix, Radionuclide, Activity Ranges and Sample Size for RTP (NIST Samples Sent to RESL)

| Matrix             | Spike | Sample mass                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Activity                |  |
|--------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--|
|                    | Alpha | ~100 g SF sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1 – 1.0 Bq/<br>sample |  |
| Synthetic<br>Fecal | Sr-90 | ~100 g SF sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I – 10 Bq/ sample       |  |
|                    | Gamma | ~100 g SF sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10-100 Bq/ sample       |  |
|                    |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |  |
| Synthetic<br>Urine | Alpha | 34 g SU salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.1 – 1.0 Bq/<br>sample |  |
|                    | H1-3  | na $\sim 100 \text{ g SF sample}$ $0.1 - 1.0 \text{ Bq/sample}$ 0 $\sim 100 \text{ g SF sample}$ $I - 10 \text{ Bq/sample}$ ma $\sim 100 \text{ g SF sample}$ $I - 10 \text{ Bq/sample}$ ma $\sim 100 \text{ g SF sample}$ $I0-100 \text{ Bq/sample}$ ma $34 \text{ g SU salt}$ $0.1 - 1.0 \text{ Bq/sample}$ $I = 10 \text{ Bq/sample}$ $I = 34 \text{ g SU salt}$ $I = 10 \text{ Bq/sample}$ |                         |  |
|                    | Sr-90 | 34 g SU salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I – I0 Bq/ sample       |  |
|                    | Gamma | 34 g SU salt                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10-100 Bq/ sample       |  |

![](_page_19_Picture_2.jpeg)

C

### Synthetic Urine Samples Sent to RESL by NIST

| Nuclide                                                          | Activity<br>Range<br>(Bq/Sample) | Sample<br>Size                                  | Spiked<br>Sample<br>s | Blank<br>Samples | Traceability<br>Acceptance<br>Criteria |
|------------------------------------------------------------------|----------------------------------|-------------------------------------------------|-----------------------|------------------|----------------------------------------|
| Th-230, U-238,<br>U-234, Np-237,<br>Am-241,Pu-238,<br>Pu-239/240 | 0. I – I.0                       | 34g<br>SU Salt                                  | 6                     | 2                | ≤ <b>9%</b>                            |
| H-3                                                              | I – 10<br>Bq/g                   | I 7g SU Salt:<br>in 500g So .<br>(Glass Bottle) | I                     | I                | ≤ <b>9%</b>                            |
| Sr-90                                                            | I – I0                           | 34g<br>SU Salt                                  | 5                     | 2                | ≤ <b>9%</b>                            |
| Cs-137, Co-60,<br>Mn-54, Co-57, Zn-<br>65, Cs-134                | 10-100                           | 34g<br>SU Salt                                  | 5                     | 2                | ≤ <b>9%</b>                            |

![](_page_20_Picture_2.jpeg)

Note: Acceptance Criteria from the RTP SOW. Replicates are provided.

![](_page_20_Picture_4.jpeg)

### Water Matrix Sent to NIST by RESL.

| Nuclide                                          | Activity<br>Range<br>(Bq/g) | Sample<br>Size | Spiked<br>Samples | Blank<br>Samples |
|--------------------------------------------------|-----------------------------|----------------|-------------------|------------------|
| U-238, U-234<br>Pu-238, Pu-239/240,<br>Am-241    | 0.001 – 0.01                | 1000g          | l bottle          | l bottle         |
| H-3                                              | 1.0 – 10                    | 500g           | l bottle          | l bottle         |
| Sr-90                                            | 0.01 – 0.1                  | 1000g          | l bottle          | l bottle         |
| Cs-137, Co-60,<br>Mn-54, Co-57, Zn-65,<br>Cs-134 | 0.1-1.0                     | 1000g          | l bottle          | l bottle         |

![](_page_21_Picture_2.jpeg)

Note: Acceptance Criteria of ANSI N42.22 Aliquot subsamples for replicated measurements

![](_page_21_Picture_4.jpeg)

Driving considerations for preparation of a spike mixture or a Master Solution

> Minimum spike mass 0.1 g.

- Composition must comply with the RTP SOW requirements.
- Decay corrections are not compromising the activities level over a few years.

To analyze the Master Solution as a verification of the massic activities derived from the gravimetric measurements.

![](_page_22_Picture_5.jpeg)

![](_page_22_Picture_6.jpeg)

![](_page_23_Figure_0.jpeg)

![](_page_23_Picture_1.jpeg)

Note: Counting statistics drives the reported uncertainty

![](_page_23_Picture_3.jpeg)

![](_page_24_Picture_0.jpeg)

### **Performance for AF analysis**

| Radionuclide | Bias<br>average, % | Bias<br>variation, % |       | Average reported<br>uncertainty, % |  |
|--------------|--------------------|----------------------|-------|------------------------------------|--|
|              |                    | from                 | to    | %                                  |  |
| Sr-90        | 0.44               | -0.37                | 2.0   | 3.6                                |  |
| U-234        | -0.25              | -1.1                 | 1.2   | 5.3                                |  |
| U-238        | 0.13               | -0.70                | 1.2   | 5.7                                |  |
| Pu-238       | -0.98              | -1.7                 | -0.10 | 6.3                                |  |
| Pu-240       | -0.80              | -1.5                 | 0.30  | 4.9                                |  |
| Am-241       | -1.80              | -2.7                 | -0.30 | 7.1                                |  |
| Mn-54        | -0.24              | -0.81                | 0.60  | 4.6                                |  |
| Co-60        | -0.26              | -0.81                | 0.30  | 3.5                                |  |
| Cs-137       | 0.03               | -1.0                 | 0.60  | 4. I                               |  |

![](_page_24_Picture_3.jpeg)

![](_page_25_Figure_0.jpeg)

![](_page_25_Picture_1.jpeg)

![](_page_25_Picture_2.jpeg)

### **Performance for Bioassay analysis**

|                     | Bias       | <b>Bias variation, %</b> |      | <b>Average reported</b> |
|---------------------|------------|--------------------------|------|-------------------------|
| <b>Radionuclide</b> | average, % | from                     | to   | uncertainty, %          |
| <sup>241</sup> Am   | -0.2       | -2.3                     | 1.4  | 8.2                     |
| <sup>238</sup> Pu   | 3.9        | 2.0                      | 6.7  | 6.9                     |
| <sup>239</sup> Pu   | 1.8        | 0.4                      | 5.7  | 6.5                     |
| <sup>237</sup> Np   | 1.9        | 1.5                      | 2.2  | 6.1                     |
| <sup>238</sup> U    | -0.8       | -6.3                     | 5.6  | 7.0                     |
| <sup>234</sup> U    | 0.3        | -2.4                     | 6.1  | 6.7                     |
| <sup>230</sup> Th   | 0.3        | -0.8                     | 1.5  | 8.8                     |
| <sup>137</sup> Cs   | -0.5       | -0.8                     | -0.3 | 3.3                     |
| <sup>134</sup> Cs   | 0.5        | 0.1                      | 0.8  | 4.7                     |
| <sup>65</sup> Zn    | 0.6        | -0.1                     | 1.3  | 7.6                     |
| <sup>60</sup> Co    | 0.6        | -1.0                     | 2    | 3.1                     |
| <sup>57</sup> Co    | -0.7       | -1.5                     | -0.1 | 4.2                     |
| <sup>54</sup> Mn    | 0.0        | -1.2                     | 1.3  | 3.8                     |
| <sup>90</sup> Sr    | -1.0       | -2.1                     | 0.9  | 3.9                     |

![](_page_26_Picture_2.jpeg)

![](_page_27_Figure_0.jpeg)

I-125 59.4 days I-131 8.0 days

A STATES OF JUST

Note: There is no matrix effect or separation involved.

![](_page_27_Picture_4.jpeg)

![](_page_28_Figure_0.jpeg)

Traceability limits (ANSI N42.22) = minimum value over the time.

![](_page_28_Picture_2.jpeg)

The PT samples preparation process is under control.

![](_page_28_Picture_4.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_29_Picture_1.jpeg)

![](_page_29_Picture_2.jpeg)

![](_page_30_Picture_0.jpeg)

U.S. DEPARTMENT OF COMMERCE National Institute of Standards and Technology Gaithersburg, MD

REPORT OF TRACEABILITY Radiological and Environmental Sciences Laboratory of the US DOE

#### Characterization of Materials Containing Radionuclides

Test Activity Reference Time:

| ference Time:                               | 12:00 ESI                       | , December 2            | 23, 2010     |                             |                        |                   |                     |           |
|---------------------------------------------|---------------------------------|-------------------------|--------------|-----------------------------|------------------------|-------------------|---------------------|-----------|
| Measurement Results                         |                                 |                         |              |                             |                        |                   |                     |           |
| Nuclide                                     | clide NIST Value <sup>2,3</sup> |                         |              | Reported Value <sup>4</sup> |                        |                   |                     |           |
|                                             | Massic Activity                 | Relative I              | Expanded     | Massic Activity             |                        | Relative Expanded |                     |           |
|                                             | Bq•g <sup>-1</sup>              | Uncertainty             | / (%, k=2)   | Bo                          | l●g <sup>-1</sup>      | Uncertain         | ty (%, k=2)         | (±% Bias) |
| <sup>241</sup> Am                           | 0.897                           | 1.                      | 1.0 0.90     |                             |                        | 8.9               | 0.3                 |           |
| <sup>238</sup> Pu                           | 0.598                           | 0.                      | 0.7 0.61     |                             |                        | 6.6               | 2.0                 |           |
| <sup>239</sup> Pu                           | 0.924                           | 0.                      | 8            | 0                           | .93                    |                   | 6.5                 | 0.7       |
| <sup>237</sup> Np                           | 1.338                           | 1.                      | 3            | 1.                          | 366                    | 5.9               |                     | 2.1       |
| <sup>238</sup> U                            | 1.073                           | 0.                      | 7            | 1                           | .06                    |                   | 7.5                 | -1.2      |
| <sup>234</sup> U                            | 1.034                           | 1.                      | 0            | 1                           | .03                    |                   | 5.8                 | -0.3      |
| <sup>230</sup> Th                           | 1.219                           | 0.                      | 7            | 1                           | .22                    |                   | 8.2                 | 0.1       |
| <sup>137</sup> Cs                           | 305.0                           | 0.                      | 9            | 3                           | 04                     |                   | 5.3                 | -0.3      |
| <sup>134</sup> Cs                           | 133.9                           | 1.                      | 9            | 1                           | 34                     |                   | 6.0                 | 0.1       |
| 60 Co                                       | 228.8                           | 0.                      | 7            | 2                           | 29                     |                   | 4.4                 | 0.1       |
| 57Co                                        | 34.1                            | 1.                      | 9            | 3                           | 3.9                    |                   | 4.1                 | -0.5      |
| <sup>54</sup> Mn                            | 42.8                            | 1.                      | 1.5 42.9     |                             | 2.9                    |                   | 4.7                 | 0.3       |
| <sup>90</sup> Sr                            | 82.5                            | 0.                      | 0.8 81       |                             |                        | 4.9               | -1.9                |           |
| Methods                                     |                                 |                         |              |                             |                        |                   |                     |           |
|                                             |                                 |                         | NIST         | T <sup>6</sup> Reporting    |                        | Reporting Labor   | ratory <sup>7</sup> |           |
| Activity Measurements Alpha- and Beta-, and |                                 | Beta-, and Ga           | ımma-Spe     | ctrometry                   | Alpha-, Bo             | ta-, and Gamm     | a- Spectrometry     |           |
|                                             | Mass Spectr                     |                         | ometry       |                             |                        |                   |                     |           |
|                                             |                                 | Ev                      | aluation (pe | er RTP C                    | criteria) <sup>8</sup> |                   |                     |           |
|                                             |                                 | Nuclide                 | Tracea       | ble                         | Trace                  | ability           |                     |           |
|                                             |                                 |                         |              |                             | Li                     | Limit             |                     |           |
|                                             |                                 |                         |              |                             | (±Pe                   | rcent)            |                     |           |
|                                             |                                 | <sup>241</sup> Am       | Yes          |                             |                        | 9                 |                     |           |
|                                             |                                 | <sup>238</sup> Pu       | Yes          | ;                           |                        | 9                 |                     |           |
|                                             |                                 | <sup>239</sup> Pu       | Yes          |                             |                        | 9                 |                     |           |
|                                             |                                 | <sup>23</sup> /Np       | Yes          | ;                           |                        | 9                 |                     |           |
|                                             |                                 | <sup>238</sup> U<br>234 | Yes          |                             |                        | 9                 |                     |           |
|                                             |                                 | 1370                    | Yes          |                             |                        | 9                 |                     |           |
|                                             |                                 | 134 C a                 | I CS<br>Ves  |                             |                        | 9                 |                     |           |
|                                             |                                 | <sup>60</sup> Со        | Ves          |                             |                        | 0                 |                     |           |
|                                             |                                 | 57C0                    | Ves          |                             |                        | 9                 |                     |           |
|                                             |                                 | <sup>54</sup> Mn        | Yes          |                             |                        | 9                 |                     |           |
|                                             |                                 | <sup>90</sup> Sr        | Yes          |                             |                        | 9                 |                     |           |
| Somples Distrib                             |                                 | stoher 2010             |              |                             | Eor th                 | e Director        |                     |           |
| Reporting Data                              | Received 10 M                   | arch 2011               |              |                             | FOL                    | ie Director       |                     |           |
| reporting Data                              |                                 |                         |              |                             |                        |                   |                     |           |

Michael Unterweger, Group Leader Radioactivity Group Physics Laboratory

![](_page_30_Picture_7.jpeg)

![](_page_30_Picture_8.jpeg)

![](_page_31_Picture_0.jpeg)

## Conclusion

- The RTP is successful.
- The Program provides a link between NIST and DOE Service Laboratories through RESL.

![](_page_31_Picture_4.jpeg)

![](_page_31_Picture_5.jpeg)

## Acknowledgment

All Colleagues from the DOE Radiological and Environmental Science Laboratory.

![](_page_33_Picture_0.jpeg)

![](_page_33_Picture_1.jpeg)

![](_page_33_Picture_2.jpeg)

![](_page_33_Picture_3.jpeg)