
RADIOLOGICAL CHRONOMETRY OF URANIUM METAL SAMPLES

Lisa Meyers
University of Cincinnati
CIRMS
Oct. 23, 2012

Nuclear Forensics Analysis of Uranium Metal

What is nuclear forensics?

 the collection and analysis of nuclear or radiological material to support investigations into the trafficking or use of those materials

Nuclear Forensics

- Important questions to ask:
 - What type of material is the sample?
 - When was the material removed from legitimate control?
 - Where or how was the material produced?
 - What is the provenance of the material?
 - What is the age of the sample?
 - Age is one of several signatures

Samples for Analysis

U-rod

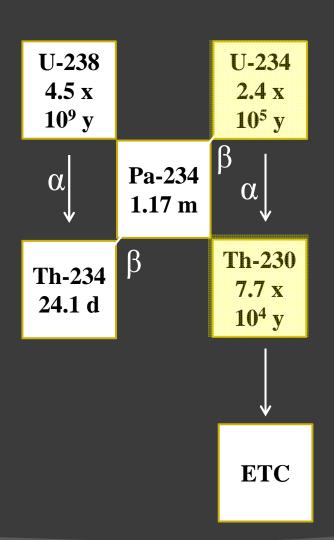
F-Element Solid

F-Element Drillings

U Metal Sample Preparation

- Etching procedure
- Serial rinse using 8M HNO₃, Milli-Q water, and acetone
- Dissolve in HNO₃ and HF
- Dilute with Milli-Q water to obtain a 6M HNO₃ solution
- Primary and secondary dilutions made with 2% HNO₃
- Aliquots traced with either ²³³U or ²²⁹Th
- Analyze U by MC-ICP-MS
 - Separate and purify thorium (AG and TEVA)
 - Analyze Th by MC-ICP-MS

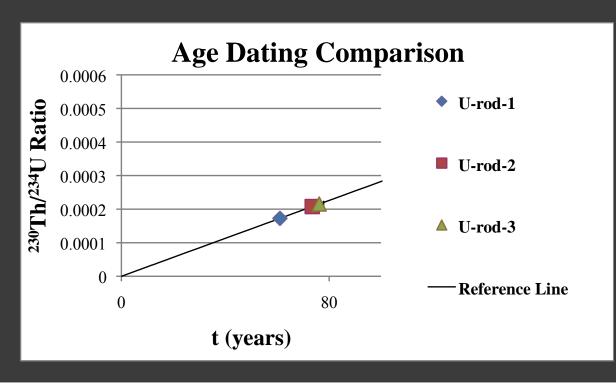
Radiochronometry: Age Dating


Does etching procedure affect the radiological age of uranium metal samples?

Uranium Metal Etching Procedures

- U-rod-1
 - 8M HNO₃ + Aqua Regia followed by 8M HNO₃
- U-rod-2
 - 8M HNO₃
- U-rod-3
 - 8M HNO₃
- U-rod-4
 - 8M HNO₃ + Conc. HCl x 2

Age Determination for Uranium

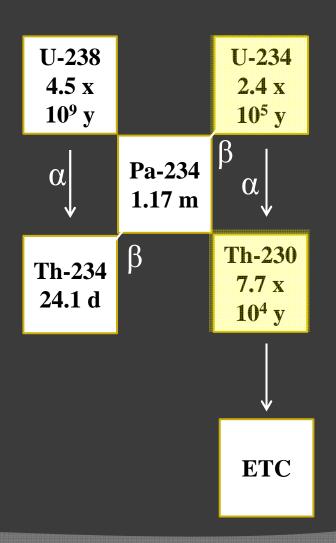


$$t = \frac{1}{(\lambda_{234} - \lambda_{230})} \times \ln \left[1 + \frac{N_{230_{Th}}}{N_{234_{U}}} \times \frac{(\lambda_{234} - \lambda_{230})}{\lambda_{234}} \right]$$

$$t_{1/2} = \frac{\lambda}{\ln(2)}$$

- λ_{234} and λ_{230} are decay constants for ²³⁴U and ²³⁰Th, respectively
- N_{230Th} and N_{234U} are the #'s of ²³⁰Th and ²³⁴U atoms, respectively
- 234 U half-life (t_{1/2}) = 245,250 ± 490 years (2 σ)
- 230 Th half-life (t_{1/2}) =75,690 ± 230 years (2 σ)

Age Dating Results: U-rod


Error bars are within point and represent 3σ.

Sample description	U, g/g	Predicted Production Date
U-rod-1	0.984 ± 0.005	July, 1950 ± 1.6 years
U-rod-2	0.886 ± 0.008	Dec., 1938 ± 1.7 years
U-rod-3	0.900 ± 0.008	Apr., 1936 ± 1.7 years

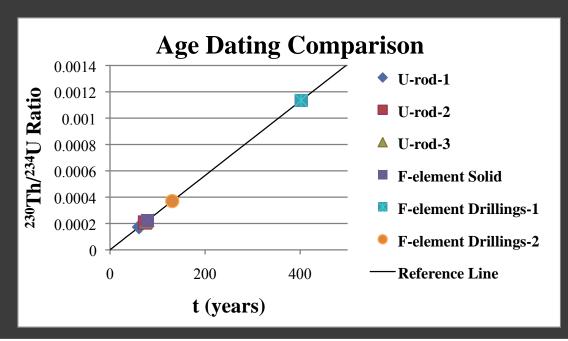
^{*} U uncertainties are given as the combined standard uncertainty (1σ) .

^{*} Analysis date (t=0) for all metal samples is March 19, 2012 besides U-rod-1, which is Aug. 1, 2011.

Age Determination for Uranium

- Uranium radiochronometry requires:
 - Complete removal of ²³⁰Th at purification/fabrication.
 - Removal of surface contamination.
 - Complete separation of uranium and thorium during chemical analysis.

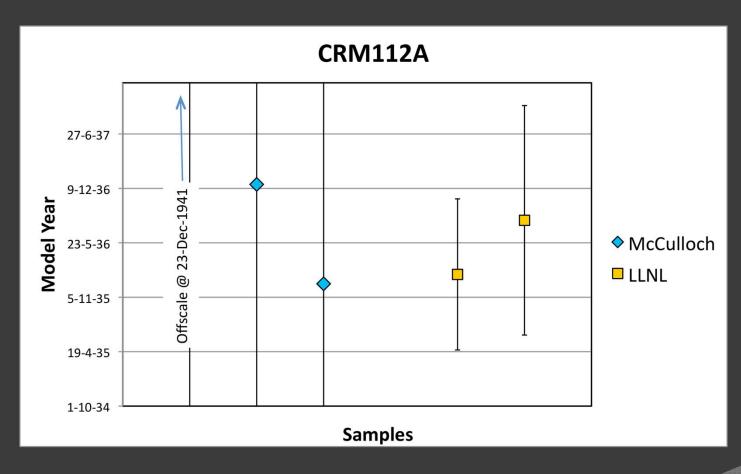
Radiochronometry: Age Dating


Does etching procedure affect the radiological age of uranium metal samples?

Uranium Metal Etching Procedures

- F-element Solid
 - 8M HNO₃
- F-element Drillings 1
 - NONE
- F-element Drillings 2
 - NONE

Age Dating Results: F-elements


Error bars are within point and represent 3σ .

Sample description	U, g/g	Predicted Production Date
U-rod-1	0.984 ± 0.005	July, 1950 ± 1.6 years
U-rod-2	0.886 ± 0.008	Dec., 1938 ± 1.7 years
U-rod-3	0.900 ± 0.008	Apr., 1936 ± 1.7 years
F-element Solid	1.003 ± 0.009	May, 1933 ± 1.8 years
F-element Drillings-1	0.929 ± 0.007	402 years old ± 8.1 years
F-element Drillings-2	0.932 ± 0.008	131 years old ± 2.9 years

^{*} U uncertainties are given as the combined standard uncertainty (1 σ).

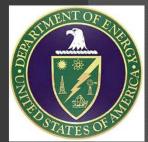
^{*} Analysis date (t=0) for all metal samples is March 19, 2012 besides U-rod-1, which is Aug. 1, 2011.

CRM 112A Age Dating

Error bars are within point and represent 2σ .

Etching procedure for reference material according to certificate is 8M HNO₃. Standard was prepared by NBS from essential pure U in the 1950s. Thus, should have an age of ~60 years in 2010.

Conclusions


Does etching affect radiological age of uranium metal samples?

- Radiochronometry may be affected by the method of sample preparation.
- Vigorous etching appears necessary to remove surface uranium and thorium that may differ in isotopic composition from the bulk material.
- This research demonstrates that severely weathered samples of uranium metal require vigorous surface etching to avoid introducing a systematic bias in determining radiological age.

Acknowledgements

- University of Cincinnati
 - Dr. Henry Spitz
 - Dr. Apryll Stalcup
 - Dr. Sam Glover
- Funding:
 - U.S. Department of Energy's Nuclear Materials Information Program
 - Nuclear Forensics Graduate Fellowship
 - Nuclear Forensics Graduate Academic Education Grant

