

An Update of "VirtualDose" Software Used for Assessing Patient Organ Doses from CT Examinations

<u>Aiping Ding</u>, X. George Xu

Rensselaer Polytechnic Institute

Troy, NY USA

http://RRMDG.rpi.edu

Acknowledgements

- NIH/NIBIB (1R42EB010404) and NIH/NLM (R01LM009362) funding supports
- Dr Bob Liu at Massachusetts General Hospital
- Dr Wesley Bolch and Mr. Danny Long at University of Florida

Concern About CT Dose at The Highest Level Today

Brenner and Hall, N Engl J Med. 2007

NCRP. Report No. 160, Ionizing Radiation **Exposure of the Population of the United** States. 2008.

A single chest CT scan ≈ 350 standard chest X-rays

<u>45 CT scans</u> are used for Image-Guided Radiation Therapy (IGRT)

Organ	CT dose (Gy)
Rectum	0.8
Prostate	0.6
Bladder	0.8
Left Femoral Head	1.82

Imaging doses (a total of 45 scans) from MDCT at 250

mAs /scan

<u>A P Ding</u>, J W Gu, X G Xu, Trofimov AV. Monte Carlo calculation of imaging doses from diagnostic multi-detector CT and kilovoltage cone beam CT as part of prostate cancer treatment plans. Med Phys. 37(12): 6199-6204, 2010 5

General Methodologies for CT Dose Estimation

- Using CTDI and DLP
- Physical Measurements Using Physical Phantoms
- Using Patient Models and Monte Carlo
 Simulations

Dosimetry Metrics on Current Commercial CT Scanners

- CT dose index (CTDI) and Dose Length Product (DLP)
- Patient gender/size specific dose information not available

Images	CTDIvol mGy	DLP mGy∙cm	Dose Eff. %	Phanton
1-2	34.26	4.28	41.87	Head 16
	l	il		
Projected	1 series DLF):	4.28	mGy∙cm

CTDI/DLP and Patient Dose — Not the Same Thing

- CTDI and DLP:
 - Standardized measures of the radiation output of a CT system
 - Not patient dose
 - No organ doses available
- It's better to use patient phantoms

Ways of Determining CT Organ Doses

Physical measurement

- ✓ Dosimeter
- Physical phantom of patient
- ✓ CT modality

CT dose measurement

Computational simulation

- Simulation tool (Monte Carlo)
- Computational model
- CT scanner model

CT dose simulation

Existing Software Packages Do not Meet the Needs

2000 20000 2000 <t< th=""><th>Termina Construction Scare Equandon Scare Equandon Scare Equandon Value Equandon Value Equandon Unit Equandon Scare Equandon Scare</th></t<> <th></th> <th>Image: Section of the section of t</th>	Termina Construction Scare Equandon Scare Equandon Scare Equandon Value Equandon Value Equandon Unit Equandon Scare Equandon Scare		Image: Section of the section of t
ImPACT	CT Dose	CT-Expo	ImpactDose

1 2 3 4

10

Motivation

- Increasing CT exposure becomes a national problem
- Accurate dosimetry tool needed
- Existing software outdated and crude
- CT dose-reporting mandatory (e.g., California)
- FDA public hearing recently on CT dose
- Our "virtual patient" technology, Monte Carlo modeling, and software engineering bring many opportunities

Methods: To Calculate Organ Doses from CT Exams

- Model patients or parts of patients
- Model CT scanner in detail
- Monte Carlo Methods/codes
- Simulate CT scans
- Calculate organ doses

Patient Phantoms

Partial patient model created from CT images

In-field organ doses <u>only</u>

Whole-body patient phantoms

- In-field organ doses
- Out-of-field organ doses
- Partial organ doses
- Averaged organ doses

Methods: Virtual Patients

—Average Population

UF pediatric phantoms - Lee (2010) (Lee, et al., Phys. Med. Biol, 2010)

RPI adult male and female phantoms - Zhang (2009) (Zhang, et al., Phys. Med. Biol, 2009)

RPI P3, P6 and P9 phantoms with gestation of 3, 6 and 9 months, respectively - Xu (2007) (Xu, et al., Phys. Med. Biol, 2007)

A New Set of Obese Phantoms

<u>Ding A</u>, Mille M, Liu T, Caracappa PF, Xu XG. Extension of RPI-adult male and female computational phantoms to obese patients and a Monte Carlo study of the effect on CT imaging dose. Phys. Med. Biol. 57(9): 2441-2459, 2012 (<u>FEATURE ARTICLE</u>).

OverWight

Obese I Obese II

Morbidly Obese

Methods: CT Scanner Modeling

- Detailed GE LightSpeed Pro 16 MDCT x-ray source and scan protocols modeled in MC codes
- Tube kVp, mAs, pitch, and collimation
- "Adjustment Factor" used for different scanners
 (Caracappa et.al, AAPM 2010)
- TCM protocols included

(Gu et.al, Phys. Med. Biol. 2009)

Methods: Monte Carlo code

MCNPX (version 2.6.0)

- Monte Carlo N-Particle Extended (MCNPX) code
- "Repeated structures" format used for patient phantoms description
- "Cookie-cutter" function used for defining fan beam
- F6 tally card to score deposited energy

Methods: A Comprehensive Slice-byslice Organ Dose Database

- Axial scan simulations in MCNPX
- Contiguous scans from the top to the bottom of 27 phantoms
- CT technical parameters

 -4 different tube voltages: 80, 100,
 120, and 140 kVp
 -4 different beam collimations: 1.25
 mm, 5 mm , 10 mm and 20 mm
 -Using both the head and body
 bowtie filters

Methods: Effective Dose Calculations

- Effective Dose takes into account
 - Absorbed Dose to specific organs
 - Radio-sensitivity of each organ
 - ICRP-103 and ICRP-60

$$E = \sum_{T} w_{T} H_{T} = \sum_{T} w_{T} \sum_{R} w_{R} D_{T,R}$$

 w_T = tissue weighting factor w_R = radiation weighting coefficient (1 for photons) $D_{T,R}$ = average absorbed dose to tissue T

Methods: Software as a Service (SaaS)

- Web-based software as a service
- Not require setup CDs
- No needs for downloads, client-side configuration
- No other tedious deployment steps
- Suitable to develop a cross-platform application

Rensselaer Methods: Service-Orientated Architecture (SOA)

- A new software design architecture
- Essentially a collection of functions
- Flexible to manage
- Easy to upgrade /update frequently
- JSON (JavaScript Object Notation) interpret and response user request

Methods: Programming Languages and Tools

- Microsoft .NET Framework
- Programming Languages
 - HTML (Hypertext Markup Language)
 - JavaScript
 - JQuery
 - C#
- Microsoft Visual Studio 2010
- Microsoft SQL Server 2008

Results: VirtuaDose[™] Graphical User Interface

Computer

Smartphone

http://www.virtualphantoms.com

Results: VirtualDose[™] Interactive Graphical User Interface

User input parameters

- Patient Phantom type
- Standard scan protocols from a dropdown Combo box
- Type of scanner
- BTF type
- Collimation for the scanner
- Z-overscanning
- kVp for the scanner
- mAs
- Pitch
- CTDI_w

Start from: 125 End at: 148

Retrieve scan information in DICOM locally for patient CT dose reporting

Results: VirtualDose[™] Rapid Archiving and Reporting Features

Copyright (c) 2012 www.virtualphantoms.com. All rights reserved.

New \$2.6 Million Grant from NIBIB to support GPU-based Monte Carlo Code Development

- Fast MC calculation speed
- Real-time CT dose calculation
- Less than 10 seconds

http://news.rpi.edu/update.do?artcenterkey=3083

Conclusions

- Existing software fail to meet current and future needs for accurate and state-of-the-art CT dose reporting
- Our work shows several improvements
 - Anatomically realistic children, adult, pregnant female, and obese patients
 - Accurate CT source modeling
 - DICOM process capability
 - User-friendly GUI design
 - Web-based service
- Clinical testing undergoing at MGH

V RTUALD SE

http://www.virtualphantoms.com